已知函數(shù)f(x)為偶函數(shù)且f(x)=f(x-4),又f(x)=
-x2-
3
2
x+5,0≤x≤1
2x+2-x,1<x≤2
,函數(shù)g(x)=(
1
2
|x|+a,若F(x)=f(x)-g(x)恰好有2個(gè)零點(diǎn),則a=
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可知f(x)是周期為4的偶函數(shù),對(duì)稱軸為直線x=2.若F(x)恰有2個(gè)零點(diǎn),有g(shù)(1)=f(1),解得a=2.
解答: 解:∵函數(shù)f(x)為偶函數(shù),
∴f(-x)=f(x)
∵f(x)=f(x-4),
∴把2-x代入得出f(2-x)=f(-2-x)=f(2+x)
即f(2+x)=f(2-x),對(duì)稱軸為x=2
∵f(x)=f(x-4),
∴f(x+4)=f(x)
可知f(x)是周期為4的偶函數(shù),對(duì)稱軸為直線x=2n,n∈N.



g(x)=(
1
2
|x|+a,
g(x)的最大值為a+1,在(0,+∞)上單調(diào)遞減,在(-∞,0)單調(diào)遞增,
∵F(x)=f(x)-g(x)恰好有2個(gè)零點(diǎn),
∴有g(shù)(1)=f(1),
1
2
+a
=-1-
3
2
+5
,
即解得a=2.
故答案為:2
點(diǎn)評(píng):本題主要考查數(shù)形結(jié)合以及函數(shù)的零點(diǎn)與交點(diǎn)的相關(guān)問題,需要學(xué)生對(duì)圖象進(jìn)行理解,對(duì)學(xué)生的能力提出很高要求,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+a|在(-∞,-1)上是單調(diào)函數(shù),則a的取值范圍是( 。
A、(-∞,1]
B、(-∞,-1]
C、[-1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a-e x
1+e x
(a∈R).
(1)若f(x)為R上的奇函數(shù),求a的值;
(2)若f(x)在R上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ是方程6x2-5x+1=0兩根,則3sin2(α+β)-cos2(α+β)=( 。
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x-y-2≤0
x+2y-5≥0
y-2≤0
,則z=
2x+y
x
的最小值是( 。
A、
7
3
B、
1
3
C、
1
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|+|x-a|.
(I)若a=-1,解不等式f(x)≥3;
(II)如果?x∈R,f(x)≥2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)數(shù)半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為
x=1+
1
2
t
y=-3
3
+
3
2
t
(t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)在直角坐標(biāo)系中,求線段AB的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,O為坐標(biāo)原點(diǎn),F(xiàn)是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn),若橢圓的長(zhǎng)軸長(zhǎng)是26,cos∠OFA=
5
13
,則橢圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù),在區(qū)間(
π
2
,π
)上恒正且是增函數(shù)的是( 。
A、y=sinx
B、y=cosx
C、y=-sinx
D、y=-cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案