8.如果函數(shù)y=2cos(3x+φ)的圖象關(guān)于點$(\frac{π}{3},0)$成中心對稱,那么|φ|的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 利用余弦函數(shù)的圖象的對稱性,求得|φ|的最小值.

解答 解:∵函數(shù)y=2cos(3x+φ)的圖象關(guān)于點$(\frac{π}{3},0)$成中心對稱,
∴3•$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z,即φ=kπ-$\frac{π}{2}$,k∈Z,
故么|φ|的最小值為$\frac{π}{2}$,
故選:D.

點評 本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l過坐標(biāo)原點和點(-1,2)關(guān)于直線y=x-1的對稱點,則直線l的方程為2x+3y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,離心率為$\frac{1}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的右焦點為F,直線3x-2y=0與橢圓C在第一象限內(nèi)的交點為P,若直線4x+3y+m=0與以PF為直徑的圓相切,求實數(shù)m值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線的傾斜角為150°,則b的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,并且an(an-1+an+1)=2an+1an-1(n≥2),則a2016=(  )
A.2016B.2017C.$\frac{1}{2016}$D.$\frac{1}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=x2(x-3)的單調(diào)遞減區(qū)間是( 。
A.(-∞,0)B.(2,+∞)C.(0,2)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}滿足a1=30,且an+1=an+2n,n∈N*,那么a45=2010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=$\frac{1}{1+x}$,各項都為正數(shù)的數(shù)列{an}滿足a1=1,an+2=f(an),若a2010=a2012,則a1800+a15的值是$\frac{4+17\sqrt{5}}{34}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.向量$\overrightarrow{a}$=(-1,1),且$\overrightarrow{a}$與$\overrightarrow{a}$+2$\overrightarrow$方向相同,則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是( 。
A.(-1,1)B.(-1,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

同步練習(xí)冊答案