【題目】已知拋物線 ,M為直線上任意一點(diǎn),過(guò)點(diǎn)M作拋物線C的兩條切線MA,MB,切點(diǎn)分別為A,B.

(1)當(dāng)M的坐標(biāo)為(0,-1)時(shí),求過(guò)M,A,B三點(diǎn)的圓的方程;

(2)證明:以為直徑的圓恒過(guò)點(diǎn)M.

【答案】(1)(2)見(jiàn)證明

【解析】

1)設(shè)出過(guò)點(diǎn)的切線方程,與拋物線方程聯(lián)立,得到一個(gè)元二次方程,它的判別式為零,可以求出切線方程的斜率,這樣可以求出A,B兩點(diǎn)的坐標(biāo),設(shè)出圓心的坐標(biāo)為,由,可以求出,最后求出圓的方程;

2)設(shè),設(shè)切點(diǎn)分別為,把拋物線方程化,求導(dǎo),這樣可以求出切線的斜率,求出切線 的方程,切線的方程,又因?yàn)榍芯過(guò)點(diǎn),切線也過(guò)點(diǎn),這樣可以發(fā)現(xiàn),是一個(gè)關(guān)于的一元二次方程的兩個(gè)根,計(jì)算出,,計(jì)算,根據(jù)根與系數(shù)關(guān)系,化簡(jiǎn),最后計(jì)算出=0,這樣就證明出以為直徑的圓恒過(guò)點(diǎn)M.

解:(1)解:當(dāng)的坐標(biāo)為時(shí),設(shè)過(guò)點(diǎn)的切線方程為,

. (1)

,解得.

代入方程(1),解得A(2,1),B(-2,1).

設(shè)圓心的坐標(biāo)為,由,得,解得.

故過(guò)三點(diǎn)的圓的方程為

(2)證明:設(shè),由已知得,,設(shè)切點(diǎn)分別為,,所以,

切線 的方程為,

切線的方程為

又因?yàn)榍芯過(guò)點(diǎn),所以得. ①

又因?yàn)榍芯也過(guò)點(diǎn),所以得. ②

所以,是方程的兩實(shí)根,

由韋達(dá)定理得

因?yàn)?/span>,

所以

代入,得.

所以以為直徑的圓恒過(guò)點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線lx+y-6=0,過(guò)直線上一點(diǎn)P作圓x2+y2=4的切線,切點(diǎn)分別為A,B,則四邊形PAOB面積的最小值為______,此時(shí)四邊形PAOB外接圓的方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為的坐標(biāo)滿足圓方程,且圓心滿足.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線交橢圓、兩點(diǎn),過(guò)垂直的直線交圓、兩點(diǎn),為線段中點(diǎn),若的面積 ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解校園噪音情況,學(xué)校環(huán)保協(xié)會(huì)對(duì)校園噪音值(單位:分貝)進(jìn)行了天的監(jiān)測(cè),得到如下統(tǒng)計(jì)表:

噪音值(單位:分貝)

頻數(shù)

(1)根據(jù)該統(tǒng)計(jì)表,求這天校園噪音值的樣本平均數(shù)(同一組的數(shù)據(jù)用該組組間的中點(diǎn)值作代表).

(2)根據(jù)國(guó)家聲環(huán)境質(zhì)量標(biāo)準(zhǔn):“環(huán)境噪音值超過(guò)分貝,視為重度噪音污染;環(huán)境噪音值不超過(guò)分貝,視為度噪音污染.”如果把由上述統(tǒng)計(jì)表算得的頻率視作概率,回答下列問(wèn)題:

(i)求周一到周五的五天中恰有兩天校園出現(xiàn)重度噪音污染而其余三天都是輕度噪音污染的概率.

(ii)學(xué)校要舉行為期天的“漢字聽(tīng)寫(xiě)大賽”校園選拔賽,把這天校園出現(xiàn)的重度噪音污染天數(shù)記為,求的分布列和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓長(zhǎng)軸是短軸的倍,且右焦點(diǎn)為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)直線交橢圓兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為,求直線的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,O的中點(diǎn).

1)證明:平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表,經(jīng)過(guò)進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

價(jià)格x(元/kg

10

15

20

25

30

日需求量ykg

11

10

8

6

5

1)根據(jù)上表給出的數(shù)據(jù),求出yx的線性回歸方程;

2)利用(1)中的回歸方程,當(dāng)價(jià)格/kg時(shí),日需求量y的預(yù)測(cè)值為多少?

(參考公式:線性回歸方程,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,則的最小值為__________ 有最小值,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案