【題目】設(shè)函數(shù).

1)試討論函數(shù)的單調(diào)性;

2)設(shè),記,當(dāng)時,若函數(shù)與函數(shù)有兩個不同交點(diǎn),,設(shè)線段的中點(diǎn)為,試問s是否為的根?說明理由.

【答案】1)見解析;(2s不是的根,理由見解析

【解析】

(1)求解函數(shù)的導(dǎo)函數(shù),分類討論可得:①若時,當(dāng)時,函數(shù)單調(diào)遞減,當(dāng)時,函數(shù)單調(diào)遞增; ②若時,函數(shù)單調(diào)遞增; ③若時,當(dāng)時,函數(shù)單調(diào)遞減,當(dāng)時,函數(shù)單調(diào)遞增.

(2)構(gòu)造新函數(shù),求解導(dǎo)函數(shù)可得,欲證,故只需證明., 由于,是方程的兩個不相等的實(shí)根,不妨設(shè)為,代入方程化簡可得,故只需證明,化簡為,構(gòu)造 ,,通過求導(dǎo)可知單調(diào)遞增.,因此即可證明不成立.

1)由,可知.

因?yàn)楹瘮?shù)的定義域?yàn)?/span>,所以,

①若時,當(dāng)時,,函數(shù)單調(diào)遞減,

當(dāng)時,,函數(shù)單調(diào)遞增;

②若時,當(dāng)內(nèi)恒成立,函數(shù)單調(diào)遞增;

③若時,當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,,函數(shù)單調(diào)遞增.

2)證明:由題可知),

所以

所以當(dāng)時,;當(dāng)時,;當(dāng)時,

欲證,故只需證明.

設(shè)是方程的兩個不相等的實(shí)根,不妨設(shè)為,

兩式相減并整理得

從而,

故只需證明*

.所以(*)式可化為,即

因?yàn)?/span>,所以,不妨令,即證,成立.

,,所以,當(dāng)且僅當(dāng)時,等號成立,

因此單調(diào)遞增.,因此,,故,,即不成立.

s不是的根得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒屬于屬的冠狀病毒,人群普遍易感,病毒感染者一般有發(fā)熱咳嗽等臨床表現(xiàn),現(xiàn)階段也出現(xiàn)無癥狀感染者.基于目前的流行病學(xué)調(diào)查和研究結(jié)果,病毒潛伏期一般為1-14天,大多數(shù)為3-7.為及時有效遏制病毒擴(kuò)散和蔓延,減少新型冠狀病毒感染對公眾健康造成的危害,需要對與確診新冠肺炎病人接觸過的人員進(jìn)行檢查.某地區(qū)對與確診患者有接觸史的1000名人員進(jìn)行檢查,檢查結(jié)果統(tǒng)計如下:

發(fā)熱且咳嗽

發(fā)熱不咳嗽

咳嗽不發(fā)熱

不發(fā)熱也不咳嗽

確診患病

200

150

80

30

確診未患病

150

150

120

120

1)能否在犯錯率不超過0.001的情況下,認(rèn)為新冠肺炎密切接觸者有發(fā)熱癥狀與最終確診患病有關(guān).

臨界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.645

7.879

10.828

2)在全國人民的共同努力下,尤其是全體醫(yī)護(hù)人員的辛勤付出下,我國的疫情得到較好控制,現(xiàn)階段防控重難點(diǎn)主要在境外輸入病例和無癥狀感染者(即無相關(guān)臨床表現(xiàn)但核酸檢測或血清特異性免疫球蛋白M抗體檢測陽者).根據(jù)防控要求,無癥狀感染者雖然還沒有最終確診患2019新冠肺炎,但與其密切接觸者仍然應(yīng)當(dāng)采取居家隔離醫(yī)學(xué)觀察14天,已知某人曾與無癥狀感染者密切接觸,而且在家已經(jīng)居家隔離10天未有臨床癥狀,若該人員居家隔離第天出現(xiàn)臨床癥狀的概率為,,兩天之間是否出現(xiàn)臨床癥狀互不影響,而且一旦出現(xiàn)臨床癥狀立刻送往醫(yī)院核酸檢查并采取必要治療,若14天內(nèi)未出現(xiàn)臨床癥狀則可以解除居家隔離,求該人員在家隔離的天數(shù)(含有臨床癥狀表現(xiàn)的當(dāng)天)的分布列以及數(shù)學(xué)期望值.(保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是邊長為5的菱形,對角線(如圖1),現(xiàn)以為折痕將菱形折起,使點(diǎn)達(dá)到點(diǎn)的位置,棱,的中點(diǎn)分為,,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線段長度的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義行列式的運(yùn)算如下:,已函數(shù)以下命題正確的是(

①對,都有;②若,對,總存在非零常數(shù)了,使得;③若存在直線的圖象無公共點(diǎn),且使的圖案位于直線兩側(cè),此直線即稱為函數(shù)的分界線.的分界線的斜率的取值范圍是;④函數(shù)的零點(diǎn)有無數(shù)個.

A.①③④B.①②④

C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,任意,不等式恒成立時最大的記為,當(dāng)時,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年我已經(jīng)8個月沒有戲拍了迪麗熱巴在8月的一檔綜藝節(jié)目上說,霍建華在家里開玩笑時說到我失業(yè)很久了;明道也在參加《演員請就位》時透露,已經(jīng)大半年沒有演過戲.為了了解演員的生存現(xiàn)狀,什么樣的演員才有戲演,有人搜集了內(nèi)地、港澳臺共計9481名演員的演藝生涯資料,在統(tǒng)計的所有演員資料后得到以下結(jié)論:①有的人在2019年沒有在影劇里露過臉;②2019年備案的電視劇數(shù)量較2016年時下滑超過三分之一;③女演員面臨的競爭更加激烈;④演員的艱難程度隨著年齡的增加而降低.請問:以下判斷正確的是(

A.調(diào)查采用了分層抽樣B.調(diào)查采用了簡單隨機(jī)抽樣

C.調(diào)查采用了系統(tǒng)抽樣D.非抽樣案例

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形中,為邊的中點(diǎn),將沿直線翻折成.為線段的中點(diǎn).

1)證明平面,并求的長;

2)在翻折過程中,當(dāng)三棱錐的體積取最大時,求平面與平面所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且離心率為

1)求橢圓的方程;

2)若斜率為的直線與橢圓交于不同的兩點(diǎn),,且線段的垂直平分線過點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(其中,點(diǎn)P的軌跡記為曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)Q在曲線上.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)當(dāng)時,求曲線與曲線的公共點(diǎn)的極坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案