設(shè)直線
(I)證明
與
相交;
(II)證明
與
的交點在橢圓
上.
(1)(反證法)假設(shè)
與
不相交,則
與
必平行,
代入
得
,與
是實數(shù)相矛盾。從而
,即
與
相交。
(2)(方法一)由
得交點p的坐標(biāo)(x,y)為
,
而
所以
與
的交點p的(x,y)在橢圓
上
(方法二)
與
的交點p的(x,y)滿足:
,
,從而
,代入
得
,整理得
所以
與
的交點p的(x,y)在橢圓
上
兩直線
的位置關(guān)系判定方法:
(1)
(2)
(3)
證明兩數(shù)不等可采用反證法的思路。
點在線上的判斷與證明只要將點的坐標(biāo)代入曲線方程判斷其是否成立即可,或求出交點的軌跡方程并判斷與所給的曲線方程是否一致即可。本題屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
定長為3的線段AB兩端點A、B分別在
軸,
軸上滑動,M在線段AB上,且
(1)求點M的軌跡C的方程;
(2)設(shè)過
且不垂直于坐標(biāo)軸的動直線
交軌跡C于A、B兩點,問:線段
上
是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線
與橢圓
有共同的焦點,點
在雙曲線C上.
(1)求雙曲線C的方程;
(2)以P(1,2)為中點作雙曲線C的一條弦AB,求弦AB所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
(常數(shù)
),點
是
上的動點,
是右頂點,定點
的坐標(biāo)為
。
⑴若
與
重合,求
的焦點坐標(biāo);
⑵若
,求
的最大值與最小值;
⑶若
的最小值為
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)已知F
1,F
2是橢圓
的左、右焦點,點P(-1,
)在橢圓上,線段PF
2與
軸的交點
滿足
.(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過F
1作不與
軸重合的直線
,
與圓
相交于A、B.并與橢圓相交于C、D.當(dāng)
,且
時,求△F
2CD的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
為雙曲線
=1的右支上一點,
分別是圓
和
上的點,則
的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知拋物線C的頂點在坐標(biāo)原點,焦點在x軸上,直線
與拋物線C相交
于A,B兩點,若
是AB的中點,則拋物線C的方程為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
為常數(shù),若點
是雙曲線
的一個焦點,則
。
查看答案和解析>>