A. | [-3,3] | B. | [3,+∞) | C. | [2,+∞) | D. | (-∞,-2]∪[2,+∞) |
分析 令g(x)=f(x)-$\frac{1}{2}$x2,根據(jù)已知條件得到g(x)的單調(diào)性,從而得到關(guān)于m的不等式,解出即可.
解答 解:令g(x)=f(x)-$\frac{1}{2}$x2,
∵g(x)+g(-x)=f(x)-$\frac{1}{2}$x2+f(-x)-$\frac{1}{2}$x2=0,
∴函數(shù)g(x)為奇函數(shù)
∵x∈(0,+∞)時(shí),g′(x)=f′(x)-x<0,
函數(shù)g(x)在x∈(0,+∞)為減函數(shù),
又由題可知,f(0)=0,g(0)=0,
所以函數(shù)g(x)在R上為減函數(shù)
∴f(6-m)-f(m)-18+6m
=f(6-m)+$\frac{1}{2}$(6-m)2-f(m)-$\frac{1}{2}$m2-18+6m≥0,
即g(6-m)-g(m)≥0,
∴g(6-m)≥g(m),
∴6-m≤m,
∴m≥3.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、奇偶性,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)=f(x)-$\frac{1}{2}$x2,判斷出g(x)的單調(diào)性是解答本題的關(guān)鍵,本題是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲種玉米苗的平均高度大于乙種玉米苗的高度,且甲種玉米苗比乙種玉米苗長(zhǎng)得整齊 | |
B. | 甲種玉米苗的平均高度大于乙種玉米苗的高度,但乙種玉米苗比甲種玉米苗長(zhǎng)得整齊 | |
C. | 乙種玉米苗的平均高度大于甲種玉米苗的高度,且乙種玉米苗比甲種玉米苗長(zhǎng)得整齊 | |
D. | 乙種玉米苗的平均高度大于甲種玉米苗的高度,但甲種玉米苗比乙種玉米苗長(zhǎng)得整齊 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,3] | B. | (1,8) | C. | (1,5] | D. | [4,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5-2\sqrt{3}}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | $\sqrt{4-2\sqrt{2}}$ | D. | $\sqrt{3-\sqrt{3}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com