【題目】數(shù)列的前項和為,記,數(shù)列滿足,,且數(shù)列的前項和為.
(1)① 計算,的值;
② 猜想,滿足的關(guān)系式,并用數(shù)學歸納法加以證明;
(2)若數(shù)列通項公式為,證明:.
【答案】(1)①,;②,證明見解析;(2)見解析
【解析】
(1)①根據(jù)題中給的遞推公式直接計算,即可.
②由①中可知,,故猜想,再根據(jù)數(shù)學歸納法的方法證明即可.
(2)根據(jù)可求得,再利用(1)中的結(jié)論放縮可得,再構(gòu)造函數(shù)證明其單調(diào)性,再累加證明即可.
(1)①,,
所以,.
②
.
猜想:. (也可以寫成)
1°當時,成立;
2°假設(shè)當時,成立,
當時,.
綜上1°,2°所述,.
(2)因,所以其前項和.
所以由(1)知.
令,則,所以在上單調(diào)遞減,
又,所以.令,所以,
即,
即,所以.
當時,,,……,,
上述個式子相加,得,
所以,則,即,故.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)在上的最大值.
①求;
②若過點可作出曲線的三條切線,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個結(jié)論:
①的周期為;
②在上單調(diào)遞增;
③函數(shù)在上有個零點;
④函數(shù)的最小值為.
其中所有正確結(jié)論的編號為( )
A.①②B.②③C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),實數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若存在,使得關(guān)于x的不等式成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是某市中心一邊長為百米的正方形地塊的平面示意圖. 現(xiàn)計劃在該地塊上劃分四個完全相同的直角三角形(即和),且在這四個直角三角形區(qū)域內(nèi)進行綠化,中間的小正方形修建成市民健身廣場,為了方便市民到達健身廣場,擬修建條路. 已知在直角三角形內(nèi)進行綠化每1萬平方米的費用為元,中間小正方形修建廣場每1萬平方米的費用為元,修路每1百米的費用為元,其中為正常數(shù).設(shè),.
(1)用表示該工程的總造價;
(2)當為何值時,該工程的總造價最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著夏季的到來,冰枕成為市面上的一種熱銷產(chǎn)品,某廠家為了調(diào)查冰枕在當?shù)卮髮W的銷售情況,作出調(diào)研,并將所得數(shù)據(jù)統(tǒng)計如下表所示:
表一:
溫度在30℃以下 | 溫度在30℃以上 | 總計 | |
女生 | 10 | 30 | 40 |
男生 | 40 | 20 | 60 |
總計 | 50 | 50 | 100 |
隨后在該大學一個小賣部調(diào)查了冰枕的出售情況,并將某月的日銷售件數(shù)(x)與銷售天數(shù)(y)統(tǒng)計如下表所示:
表二:
第天 | 2 | 4 | 6 | 8 | 10 |
(件) | 3 | 6 | 7 | 10 | 12 |
(1)請根據(jù)表二中的數(shù)據(jù)在下列網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)表二中提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)從(1)(2)中的數(shù)據(jù)及回歸方程我們可以得到,銷售件數(shù)隨著銷售天數(shù)的增長而增長,但無法判斷男、女生對冰枕的選擇是否與溫度有關(guān),請結(jié)合表一中的數(shù)據(jù),并自己設(shè)計方案來判段是否有99.9%的可能性說明購買冰枕的性別與溫度相關(guān).
參考數(shù)據(jù)及公式:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
;,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品的三個質(zhì)量指標可用有序?qū)崝?shù)對表示,用綜合指標評價該產(chǎn)品的等級.若,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下:
產(chǎn)品編號 | |||||
產(chǎn)品指標 | |||||
產(chǎn)品編號 | |||||
產(chǎn)品指標 |
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標都等于4”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,AD⊥CD,AB∥CD,AB=3,AD=4,AE=5,.
(1)證明:DF∥平面BCE.
(2)求A到平面BEDF的距離,并求四棱錐A﹣BEDF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知F是拋物線C:的焦點,過E(﹣l,0)的直線與拋物線分別交于A,B兩點(點A,B在x軸的上方).
(1)設(shè)直線AF,BF的斜率分別為,,證明:;
(2)若ABF的面積為4,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com