【題目】已知圓x2y24ax2ay20a200.

(1)求證:對(duì)任意實(shí)數(shù)a,該圓恒過一定點(diǎn);

(2)若該圓與圓x2y24相切,求a的值.

【答案】(1)見解析(2) a.

【解析】試題分析:(1)將分離,可得(x2y220)a(4x2y20)0,對(duì)任意實(shí)數(shù)成立,則,即可求出定點(diǎn)坐標(biāo);(2)將圓的方程化為標(biāo)準(zhǔn)方程,由題意可將兩圓關(guān)系分為外切和內(nèi)切,分別求出的值.

試題解析:(1)證明:圓的方程可整理為(x2y220)a(4x2y20)0,

此方程表示過圓x2y2200和直線-4x2y200交點(diǎn)的圓系.

∴已知圓恒過定點(diǎn)(4,-2)

(2)圓的方程可化為(x2a)2(ya)25(a2)2.

①當(dāng)兩圓外切時(shí),dr1r2,

解得aa (舍去);

②當(dāng)兩圓內(nèi)切時(shí),d|r1r2|,

,

解得aa (舍去)

綜上所述,a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線Cx2﹣y2=1及直線l:y=kx﹣1.
(1)若l與C左支交于兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且△AOB的面積為 ,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+3a2+32a3+…+3n1an= ,n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn=n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,所得數(shù)據(jù)如表所示:

x

6

8

10

12

y

2

3

5

6

畫出上表數(shù)據(jù)的散點(diǎn)圖如圖所示
(其中 , =

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 = x+
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)記憶力為9的學(xué)生的判斷力

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)于任意的x∈[﹣1,0],關(guān)于x的不等式3x2+2ax+b≤0恒成立,則a2+b2﹣2的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若當(dāng)時(shí),函數(shù)的圖象恒在直線上方,求實(shí)數(shù)的取值范圍;

(2)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.

(Ⅰ)在圖2中,求證: ;

(Ⅱ)若點(diǎn)是線段上的一動(dòng)點(diǎn),問點(diǎn)什么位置時(shí),二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知bcosC+ bsinC﹣a﹣c=0,則角B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解小學(xué)生近視情況,決定隨機(jī)從同一個(gè)學(xué)校二年級(jí)到四年級(jí)的學(xué)生中抽取60名學(xué)生檢測(cè)視力,其中二年級(jí)共有學(xué)生2400人,三年級(jí)共有學(xué)生2000人,四年級(jí)共有學(xué)生1600人,則應(yīng)從三年級(jí)學(xué)生中抽取的學(xué)生人數(shù)為( 。
A.24
B.20
C.16
D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案