已知函數(shù)y=f(x)是定義在(-2,2)的奇函數(shù),當x∈(0,2)時,f(x)=2x-1,則f(log2
1
3
)的值為(  )
A、
32
-1
B、-
2
3
C、2
D、-2
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)對數(shù)的基本運算,利用函數(shù)的奇偶性進行轉(zhuǎn)換即可得到結(jié)論.
解答: 解:∵log2
1
3
=-log23∈(-2,-1),y=f(x)是定義在(-2,2)的奇函數(shù)
∴f(log2
1
3
)=f(-log23)=-f(log23)=-(2log23-1)=-(3-1)=-2,
故選:D.
點評:本題主要考查函數(shù)值的計算,利用函數(shù)的奇偶性的性質(zhì)是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y,z,給出下列命題:
①若x>1,y>1,且lnx,1,4lny成等比數(shù)列,則xy有最小值e;
②若x,y,z為正實數(shù),且滿足x2+y2+z2=1,則
1
x2
+
1
y2
+
1
z2
的最小值為9;
③若x和y為正數(shù),a=x+y,b=
x2+xy+y2
,c=2
xy
,則a、b、c可作三角形的三邊;
④若關于x方程
|x|
x+4
=kx2有4個不同的實數(shù)解,則k∈(1,+∞).
其中正確命題的序號為:
 
(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(4,-3),
b
=(2,1),若
a
+t
b
b
的夾角為45°,則實數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐P-ABC中,側(cè)棱PA,PB,PC兩兩垂直,PA=1,PB=2,PC=3,則三棱錐的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知z1=1+i,且z1•(z1+z2)=4,則復數(shù)z2=( 。
A、1+iB、1-i
C、1+3iD、1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知空間直線l不在平面α內(nèi),則“直線l上有兩個點到平面α的距離相等”是“l(fā)∥α”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:ea<eb,q:lna<lnb,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=(m2+2m-3)+(m-1)i是純虛數(shù)(i是虛數(shù)單位),則實數(shù)m=( 。
A、-3B、3C、1D、1或-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠有工人1000人,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣的方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處的生產(chǎn)能力指一天加工的零件數(shù)).
(1)A類工人和B類工人中各抽查多少工人?
(2)從A類工人中的抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2.
表1
生產(chǎn)能力分組 [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 4 8 x 5 3
表2
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 6 y 36 18
①求x,y,再完成下列頻率分布直方圖;

②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù)(同一組
中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

同步練習冊答案