(本小題滿分12分)
解:(Ⅰ)函數(shù)的定義域:(0,+∞),
當(dāng)a=-2時,f′(x)=
,
當(dāng)x∈(0,
)時,f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,+∞)時,f′(x)<0,函數(shù)是減函數(shù).
因為f(
)=
,所以此時在定義域上f(x)<0,
s所以函數(shù)f(x)零點的個數(shù)為0.;
(Ⅱ)f′(x)=2ax-(a+2)+
=
,
①當(dāng)a≤0時,當(dāng)x∈(0,
)時,f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,+∞)時,f′(x)<0,函數(shù)是減函數(shù).
②當(dāng)0<a<2時,
當(dāng)x∈(0,
)時,f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,
)時,f′(x)<0,函數(shù)是減函數(shù);
當(dāng)x∈(
,+∞)時,f′(x)>0,函數(shù)是增函數(shù).
③當(dāng)a=2時,f′(x)=
,對一切x∈(0,+∞)恒成立,當(dāng)且僅當(dāng)x=1時f′(x)=0,函數(shù)是單調(diào)增函數(shù),單調(diào)增區(qū)間(0,+∞)
④當(dāng)a>2時,
當(dāng)x∈(0,
)時,f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,
)時,f′(x)<0,函數(shù)是減函數(shù);
當(dāng)x∈(
,+∞)時,f′(x)>0,函數(shù)是增函數(shù).
綜上:當(dāng)a≤0時,函數(shù)f(x)的單調(diào)增區(qū)間(0,
),單調(diào)減區(qū)間是(
).
當(dāng)0<a<2時,函數(shù)f(x)的單調(diào)增區(qū)間(0,
)和(
),單調(diào)減區(qū)間是(
).
當(dāng)a=2時,函數(shù)的單調(diào)增區(qū)間(0,+∞)
當(dāng)a>2時,函數(shù)f(x)的單調(diào)增區(qū)間(0,
)和(
),單調(diào)減區(qū)間是(
).
分析:(Ⅰ)求出函數(shù)的定義域,通過a=-2時,求出函數(shù)的導(dǎo)函數(shù),判斷函數(shù)f(x)的極大值,然后推出函數(shù)的零點的個數(shù);
(Ⅱ)通過求解函數(shù)的導(dǎo)函數(shù),通過:當(dāng)a≤0,0<a<2,a=2,a>2,分別通過函數(shù)的導(dǎo)數(shù)列表,然后求函數(shù)f(x)的單調(diào)區(qū)間.
點評:本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性函數(shù)的極值,考查分類討論以及計算能力.