【題目】已知圓和直線
(1)求證:不論取什么值,直線和圓C總相交;
(2)求直線被圓C截得的最短弦長及此時的直線方程.
【答案】(1)詳見解析;(2) , .
【解析】試題分析: 由直線的方程可得直線恒通過點,而點 在圓的內(nèi)部,故得到不論取什么值,直線和圓C總相交;
設(shè)定點為,因為 ,求出直線的斜率,即可寫出直線的方程,
求出圓心到直線距離,即可求出弦長。
解析:(1)證明:由直線的方程可得, ,則直線恒通過點
,把代入圓的方程,得,
所以點在圓的內(nèi)部,又因為直線恒過點,
所以直線與圓總相交.
(2)設(shè)定點為,由題可知當(dāng)直線與直線垂直時,直線被圓截得的弦長最短,
因為,所以直線的斜率為
所以直線的方程為,即
設(shè)圓心到直線距離為,則
所以直線被圓截得最短的弦長為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y= 的定義域是{x|x>2},則它的值域是{y|y≤ };
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|﹣2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|0<x≤8}.
其中不正確的命題的序號是 . (注:把你認(rèn)為不正確的命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為, .
(1)求數(shù)列的通項公式;
(2)令,設(shè)數(shù)列的前項和為,求;
(3)令,若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)在(2,+∞)為增函數(shù),且函數(shù)y=f(x+2)為偶函數(shù),則下列結(jié)論不成立的是( )
A.f(0)>f(1)
B.f(0)>f(2)
C.f(1)>f(3)
D.f(1)>f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點.
(Ⅰ)證明: ;
(Ⅱ)若為上的動點, 與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時,該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:
根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說法中,不正確的是
A. 首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
B. 每次服用該藥物1單位,兩次服藥間隔小于2小時,一定會產(chǎn)生藥物中毒
C. 每間隔5.5小時服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
D. 首次服用該藥物1單位3小時后,再次服用該藥物1單位,不會發(fā)生藥物中毒
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的單調(diào)增函數(shù)f(x),對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(k3x)+f(3x﹣9x﹣2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, 成等差數(shù)列是的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com