【題目】已知數(shù)列{an}的首項a1=1,且滿足an+1﹣an≤n2n , an﹣an+2≤﹣(3n+2)2n , 則a2017= .
【答案】2015×22017+3
【解析】解:∵an+1﹣an≤n2n,an﹣an+2≤﹣(3n+2)2n,
∴an+1﹣an+2≤n2n﹣(3n+2)2n=﹣(n+1)2n+1.即an+2﹣an+1≥(n+1)2n+1.
又an+2﹣an+1≤(n+1)2n+1.
∴an+2﹣an+1=(n+1)2n+1.
可得:an+1﹣an=n2n,(n=1時有時成立).
∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1
=(n﹣1)2n﹣1+(n﹣2)2n﹣2+…+222+2+1.
2an=(n﹣1)2n+(n﹣2)2n﹣1+…+22+2,
可得:﹣an=﹣(n﹣1)2n+2n﹣1+2n﹣2+…+22+1= ﹣1﹣(n﹣1)2n.
∴an=(n﹣2)2n+3.
∴a2017=201522017+3.
所以答案是:2015×22017+3.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的通項公式的相關(guān)知識,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x2+ax+ 在( ,+∞)上是增函數(shù),則a的取值范圍是( )
A.[﹣1,0]
B.[﹣1,+∞)
C.[0,3]
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,不等式 + ≥ 成立;在四邊形ABCD中,不等式 + + + ≥ 成立成立;在五邊形ABCDE中,不等式 + + + + ≥ 成立…,依此類推,在n邊形A1A2…An中,不等式不等式 ≥成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時,x2<ex;
(3)證明:對任意給定的正數(shù)c,總存在x0 , 使得當(dāng)x∈(x0 , +∞)時,恒有x<cex .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣lnx(ln2≈﹣0.693, ≈1.648,均為不足近似值)
(1)當(dāng)x≥1時,判斷函數(shù)f(x)的單調(diào)性;
(2)證明:當(dāng)x>0時,不等式f(x)> 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)公差不為0的等差數(shù)列{an}的前n項和為Sn , 若a2 , a5 , a11成等比數(shù)列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(1, ),離心率為 ,點A為橢圓C的右頂點,直線l與橢圓相交于不同于點A的兩個點P(x1 , y1),Q(x2 , y2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) ⊥ =0時,求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+a+3:
(1)若函數(shù)y=f(x)在[﹣1,1]上存在零點,求實數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=x+b,當(dāng)a=3時,若對任意的x1∈[1,4],總存在x2∈[5,8],使得g(x1)=f(x2),求實數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com