已知平面內(nèi)一動點到點的距離與點軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設與軌跡相交于點,與軌跡相交于點,求的最小值.

(1));(2)16

解析試題分析:(1)設動點的坐標為,由題意得  …2分
化簡得 當;當
所以動點的軌跡的方程為)  ………………………5分
(2)由題意知,直線的斜率存在且不為0,設為,則的方程為

, …6分
因為,所以的斜率為.設,則同理可得    , ……7分

 ………10分
 …12分
當且僅當時,取最小值16.…13分
考點:本題考查了軌跡方程的求法及直線與拋物線的位置關(guān)系
點評:從近幾年課標地區(qū)的高考命題來看,解析幾何綜合題主要考查直線和圓錐曲線的位置關(guān)系以及范圍、最值、定點、定值、存在性等問題,直線與多種曲線的位置關(guān)系的綜合問題將會逐步成為今后命題的熱點,尤其是把直線和圓的位置關(guān)系同本部分知識的結(jié)合,將逐步成為今后命題的一種趨勢.近幾年高考題中經(jīng)常出現(xiàn)了以函數(shù)、平面向量、導數(shù)、數(shù)列、不等式、平面幾何、數(shù)學思想方法等知識為背景,綜合考查運用圓錐曲線的有關(guān)知識分析問題、解決問題的能力

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點。
(1)求橢圓的方程;
(2)若坐標原點到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線與橢圓+=1有公共的焦點,且與橢圓相交,它們的交點中一個交點的縱坐標是4,求雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點是橢圓的右焦點,點、分別是軸、
軸上的動點,且滿足.若點滿足
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設過點任作一直線與點的軌跡交于兩點,直線、與直線分別交
于點為坐標原點),試判斷是否為定值?若是,求出這個定值;若不是,
請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直接坐標系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線L的位置關(guān)系;
(2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線的頂點為,該雙曲線又與直線交于兩點,且為坐標原點)。
(1)求此雙曲線的方程;
(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

己知橢圓的離心率為,是橢圓的左右頂點,是橢圓的上下頂點,四邊形的面積為.
(1)求橢圓的方程;
(2)圓兩點.當圓心與原點的距離最小時,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的兩焦點是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線上任意一點;
(1)求證:點到雙曲線的兩條漸近線的距離的乘積是一個常數(shù);
(2)設點,求的最小值.

查看答案和解析>>

同步練習冊答案