(本小題滿分13分)
已知過橢圓C:
+
=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數(shù)
圖象的一條對稱軸的方程是
.
(1)求橢圓
C
的離心率e與直線AB的方程;
(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式
+
成立.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
過點
,且離心率為
.
(1)求橢圓
的方程;
(2)
為橢圓
的左右頂點,點
是橢圓
上異于
的動點,直線
分別交直線
于
兩點.證明:以線段
為直徑的圓恒過
軸上的定點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
F1,F(xiàn)2是
的左、右焦點,點P在橢圓上運(yùn)動,則
的最大值是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分13分)
已知橢圓
的焦點為
,
,
離心率為
,直線
與
軸,
軸分別交于點
,
.
(Ⅰ)若點
是橢圓
的一個頂點,求橢圓
的方程;
(Ⅱ)若線段
上存在點
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
,
分別為橢圓
的左、右焦點,過
的直
線
與橢圓
相交于
,
兩點,直線
的傾斜角為
,
到直線
的距離為
;
(1)求橢圓
的焦距;
(2)如果
,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的對稱軸為坐標(biāo)軸,且拋物線
的焦點是橢圓
的一個焦點,又點
在橢圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知直線
的方向向量為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)F(c,0)為橢圓
的右焦點,橢圓上的點與點F的距
離的最大值為M,最小值為m,則橢圓上與F點的距離是
的點是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知
、
分別是橢圓
的左、右焦點,點B是其上頂點,橢圓的右準(zhǔn)線與
軸交于點N,且
。
(1)求橢圓方程;
(2)直線
:
與橢圓交于不同的兩點M、Q,若△BMQ是以MQ為底邊的等腰三角形,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓E:
(a>b>0)的離心率e=
,左、右焦點分別為F
1、F
2,點P(2,
),點F
2在線段PF
1的中垂線上
(1)求橢圓E的方程;
(2)設(shè)
l1,
l2是過點G(
,0)且互相垂直的兩條直線,
l1交E于A,
B兩點,
l2交E于C,D兩點,求
l1的斜率k的取值范圍;
(3)在(2)的條件下,設(shè)AB,CD的中點分別為M,N,試問直線MN是否恒過定點?
若經(jīng)過
,求出該定點坐標(biāo);若不經(jīng)過,請說明理由。
查看答案和解析>>