【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級240名學生進行一次測試.共5道客觀題.測試前根據(jù)對學生的了解,預估了每道題的難度,如表所示:
測試后,隨機抽取了 20名學生的答題數(shù)據(jù)進行統(tǒng)計,結(jié)果如下
(1)根據(jù)題中數(shù)據(jù),估計這240名學生中第5題的實測答對人數(shù);
(2)從抽取的20名學生中再隨機抽取2名學生,記這2名學生中第5題答對的人數(shù)為,求的分布列和數(shù)學期望;
(3)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預估難度.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.試據(jù)此判斷本次測試的難度預估是否合理.
【答案】(1)96人;(2)見解析, (3)該次測試的難度預估是合理的
【解析】試題分析:(1)題設中給出了難度系數(shù)是答對該題的人數(shù)除以參加考試的總?cè)藬?shù),由第二張表可知實測難度為,故估計240人中答對該題的人數(shù)約為96人.(2)離散型隨機變量服從超幾何分布,利用公式可以計算出、、,列表給出分布列,并利用公式計算.(3)先計算出各題的實測難度,根據(jù)題設給出的公式計算,該次測試的難度預估是合理的.
解析:(1)因為20人中答對第5題的人數(shù)為8人,因此第5題的實測難度為.所以,估計240人中有人實測答對第5題.
(2)的可能取值是 ; ; .
的分布列為:
.
(3)將抽樣的20名學生中第題的實測難度,作為24O名學生第題的實測難度.各題的實測難度如下表:
題號 | 1 | 2 | 3 | 4 | 5 |
實測難度 | 0.8 | 0.8 | 0.7 | 0.7 | 0.4 |
所以,因為,所以,該次測試的難度預估是合理的.
科目:高中數(shù)學 來源: 題型:
【題目】等腰△ABC中,AB=AC=5,BC=6,將△ABC沿BC邊上的高AD折成直二面角BADC,則三棱錐BACD的外接球的表面積為( )
A. 5π B.
C. 10π D. 34π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在中國首都北京舉行,會議期間,達成了多項國際合作協(xié)議.假設甲、乙兩種品牌的同類產(chǎn)品出口某國家的市場銷售量相等,該國質(zhì)量檢驗部門為了解他們的使用壽命,現(xiàn)從這兩種品牌的產(chǎn)品中分別隨機抽取300個進行測試,結(jié)果統(tǒng)計如下圖所示,已知乙品牌產(chǎn)品使用壽命小于200小時的概率估計值為.
(1)求的值;
(2)估計甲品牌產(chǎn)品壽命小于200小時的概率;
(3)這兩種品牌產(chǎn)品中,某個產(chǎn)品已使用了200小時,試估計該產(chǎn)品是乙品牌的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形為等腰梯形, , 沿對角線將旋轉(zhuǎn),使得點至點的位置,此時滿足.
(1)判斷的形狀,并證明;
(2)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓: 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .
(1)求橢圓的標準方程;
(2)設橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“若,則”的逆否命題為“若,則”
B. 若命題 “, ”,則命題的否定為“, ”
C. “”是“”的充分不必要條件
D. “”是“直線與直線互為垂直”的充要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且, ,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說明理由;
(3)設是無窮數(shù)列,已知.求證:“對任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com