【題目】隨著快遞行業(yè)的崛起,中國快遞業(yè)務(wù)量驚人,2018年中國快遞量世界第一,已連續(xù)五年突破五百億件,完全超越美日歐的總和,穩(wěn)居世界第一名.某快遞公司收取費(fèi)的標(biāo)準(zhǔn)是:不超過1kg的包裹收費(fèi)8元;超過1kg的包裹,在8元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計(jì)算)需再收4元.
該公司將最近承攬(接收并發(fā)送)的100件包裹的質(zhì)量及件數(shù)統(tǒng)計(jì)如下(表1):
表1:
公司對近50天每天承攬包裹的件數(shù)(在表2中的“件數(shù)范圍”內(nèi)取的一個近似數(shù)據(jù))、件數(shù)范圍及天數(shù),列表如下(表2):
表2:
(1)將頻率視為概率,計(jì)算該公司未來3天內(nèi)恰有1天攬件數(shù)在100~299之間的概率;
(2)①根據(jù)表1中最近100件包裹的質(zhì)量統(tǒng)計(jì),估計(jì)該公司對承攬的每件包裹收取快遞費(fèi)的平均值:
②根據(jù)以上統(tǒng)計(jì)數(shù)據(jù),公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,其余用作其他費(fèi)用.目前,前臺有工作人員5人,每人每天攬件數(shù)不超過100件,日工資80元.公司正在考慮是否將前臺人員裁減1人,試計(jì)算裁員前、后公司每天攬件數(shù)的數(shù)學(xué)期望;若你是公司決策者,根據(jù)公司每天所獲利潤的期望值,決定是否裁減前臺工作人員1人?
【答案】(1) (2) ①12 ②應(yīng)裁減1人
【解析】
(1)根據(jù)獨(dú)立重復(fù)時間概率計(jì)算公式,可得未來3天內(nèi)恰有1天攬件數(shù)在100~299之間的概率。
(2) ①求出收件費(fèi)用與收件質(zhì)量的函數(shù)關(guān)系式,再由平均數(shù)定義即可求得平均收件費(fèi)用。
②根據(jù)收件數(shù)量與收件單價(jià),可分別計(jì)算出裁減人員前后的利潤,比較即可判斷出是否需要裁減人員。
(1) 將頻率視為概率,計(jì)算該公司未來3天內(nèi)恰有1天攬件數(shù)在100~299之間的概率為獨(dú)立重復(fù)事件
樣本中包裹件數(shù)在100~299之間的天數(shù)為,頻率為
所以
(2) ①設(shè)收件費(fèi)用為y,收件質(zhì)量為x,則
收件費(fèi)用與收件質(zhì)量的關(guān)系式為y=8+4(x-1)=4x+4
所以每件包裹收取快遞費(fèi)的平均值為
②根據(jù)題意及①,攬件數(shù)每增加1,公司快遞收入增加12(元)
若不裁員,則每天可攬件的上限為500件,公司每日攬件數(shù)情況如下:
包裹件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
實(shí)際攬件數(shù)(取中值) | 50 | 150 | 250 | 350 | 450 |
頻率 | 0.1 | 0.2 | 0.5 | 0.1 | 0.1 |
EY | 50×0.1+150×0.2+250×0.5+350×0.1+450×0.1=240 |
所以公司每日利潤的期望值為元
若裁員1人,則每天可攬件的上限為400件,公司每日攬件數(shù)情況如下:
包裹件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
實(shí)際攬件數(shù)(取中值) | 50 | 150 | 250 | 350 | 400 |
頻率 | 0.1 | 0.2 | 0.5 | 0.1 | 0.1 |
EY | 50×0.1+150×0.2+250×0.5+350×0.1+400×0.1=235 |
所以公司每日利潤的期望值為元
因?yàn)?/span>560<620 ,所以公司應(yīng)將前臺工作人員裁員1人。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程有兩個不等的負(fù)根;關(guān)于的方程無實(shí)根,若為真,為假,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),動點(diǎn)異于原點(diǎn)在y軸上運(yùn)動,連接FP,過點(diǎn)P作PM交x軸于點(diǎn)M,并延長MP到點(diǎn)N,且,.
求動點(diǎn)N的軌跡C的方程;
若直線l與動點(diǎn)N的軌跡交于A、B兩點(diǎn),若且,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: (為參數(shù)),是上的動點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為
(1)求線段的中點(diǎn)的軌跡的普通方程;
(2)證明:為定值,并求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ADEF與梯形ABCD所在的平面互相垂直,,,,,,M為CE的中點(diǎn),N為CD中點(diǎn).
求證:平面平面ADEF;
求證:平面平面BDE;
求點(diǎn)D到平面BEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機(jī)摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.
(1)摸出的3個球?yàn)榘浊虻母怕适嵌嗌伲?
(2)摸出的3個球?yàn)?/span>2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計(jì))能賺多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,部分對應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示,給出關(guān)于的下列命題:
①函數(shù)在處取得極小值;
②函數(shù)在是減函數(shù),在是增函數(shù);
③當(dāng)時,函數(shù)有4個零點(diǎn);
④如果當(dāng)時,的最大值是2,那么的最小值為0.
其中所有的正確命題是__________(寫出正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}為遞增的等差數(shù)列,數(shù)列{bn}滿足bn=anan+1an+2(n∈N*),設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,若a2,則當(dāng)Sn取得最小值時n的值為( )
A.14B.13C.12D.11
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com