【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為.
(Ⅰ)求的解析式;
(Ⅱ)當,求的值域.
【答案】(1) (2)[-1,2]
【解析】試題分析:根據(jù)正弦型函數(shù)圖象特點,先分析出函數(shù)的振幅和周期,最低點為,得,周期,則,又函數(shù)圖象過,代入得,故,又,從而確定,得到,再求其單調(diào)增區(qū)間.
(2)分析,結合正弦函數(shù)圖象,可知當,即時, 取得最大值;當,即時, 取得最小值,故的值域為.
試題解析:(1)依題意,由最低點為,得,又周期,∴.
由點在圖象上,得,
∴, , .
∵,∴,∴.
由, ,得.
∴函數(shù)的單調(diào)增區(qū)間是.
(2) ,∴.
當,即時, 取得最大值;
當,即時, 取得最小值,故的值域為.
科目:高中數(shù)學 來源: 題型:
【題目】某電臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總人數(shù)為12000人,其中持各種態(tài)度的人數(shù)如下表:
很喜愛 | 喜愛 | 一般 | 不喜愛 |
2435 | 4567 | 3926 | 1072 |
電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應當怎樣進行抽樣?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對任意x∈(0,+∞)恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓 : 上的點 關于點 的對稱點為 ,記 的軌跡為 .
(1)求 的軌跡方程;
(2)設過點 的直線 與 交于 , 兩點,試問:是否存在直線 ,使以 為直徑的圓經(jīng)過原點?若存在,求出直線 的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線.
(1)若直線在軸上的截距為-2,求實數(shù)的值,并寫出直線的截距式方程;
(2)若過點且平行于直線的直線的方程為: ,求實數(shù)的值,并求出兩條平行直線之間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場經(jīng)銷一批進價為每件30元的商品,在市場試銷中發(fā)現(xiàn),此商品的銷售單價x(元)與日銷售量y(件)之間有如下表所示的關系:
x | 30 | 40 | 45 | 50 |
y | 60 | 30 | 15 | 0 |
在所給的坐標圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實數(shù)對(x,y)的對應點,并確定y與x的一個函數(shù)關系式;
(2)設經(jīng)營此商品的日銷售利潤為P元,根據(jù)上述關系,寫出P關于x的函數(shù)關系式,并指出銷售單價x為多少元時,才能獲得最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并說明理由;
(3)若函數(shù),求函數(shù)的零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com