已知圓錐曲線經(jīng)過定點,它的一個焦點為,對應于該焦點的
準線為,斜率為的直線交圓錐曲線兩點,且,
求圓錐曲線和直線的方程.
圓錐曲線的方程為,直線的方程為
設圓錐曲線的離心率為的距離為,則,
∴圓錐曲線是拋物線,∵,∴,
∴拋物線方程為,
的方程為,
,消去,整理得:,
,
,
又∵,∴,得,
故直線的方程為,
綜上所述:圓錐曲線的方程為,直線的方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

過點T(2,0)的直線交拋物線y2=4xAB兩點.
(I)若直線l交y軸于點M,且m變化時,求的值;
(II)設A、B在直線上的射影為D、E,連結AEBD相交于一點N,則當m變化時,點N為定點的充要條件是n=-2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線y=x2(a≠0)的焦點坐標是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P(-3,0),點A在y軸上,點Q在x軸非負半軸上,點M在直線AQ上,滿足·=0,=-.
(1)當點A在y軸上移動時,求動點M的軌跡C的方程;
(2)設軌跡C的準線為l,焦點為F,過F作直線m交軌跡C于G,H兩點,過點G作平行于軌跡C的對稱軸的直線n,且n∩l=E,試問點E,O,H(O為坐標原點)是否在同一條直線上?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線為非零常數(shù))的焦點為,點為拋物線上一個動點,過點且與拋物線相切的直線記為
(1)求的坐標;
(2)當點在何處時,點到直線的距離最。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是拋物線上上的一點,動弦分別交軸于兩點,且
(1)  若為定點,證明:直線的斜率為定值;
(2)  若為動點,且,求的重心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線,焦點為F,一直線與拋物線交于A、B兩點,且

,且AB的垂直平分線恒過定點S(6, 0)
①求拋物線方程;
②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標之和等于,則這樣的直線( )                     
A.有且僅有一條     B.有且僅有兩條      C.1條或2條      D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

動點P在拋物線上運動,則P點與點A(0,-1)所連線段中點M的軌跡方程是                        

查看答案和解析>>

同步練習冊答案