設(shè)變量x,y滿足|x-1|+|y-a|≤1,若2x+y的最大值是5,則實(shí)數(shù)a的值是( 。
A、2B、1C、0D、-1
考點(diǎn):絕對值三角不等式
專題:不等式的解法及應(yīng)用
分析:滿足條件的點(diǎn)(x,y)構(gòu)成趨于為平行四邊形ABCD及其內(nèi)部區(qū)域,令z=2x+y,顯然當(dāng)直線y=-2x+z過點(diǎn)C(2,a)時(shí),z取得最大值為5,即4+a=5,由此求得a的值.
解答: 解:設(shè)點(diǎn)M(1,a),則滿足|x-1|+|y-a|≤1的點(diǎn)(x,y)構(gòu)成趨于為平行四邊形ABCD及其內(nèi)部區(qū)域,
如圖所示:令z=2x+y,則z表示直線y=-2x+z在y軸上的截距,
故當(dāng)直線y=-2x+z過點(diǎn)C(2,a)時(shí),z取得最大值為5,即4+a=5,求得 a=1,
故選:B.
點(diǎn)評:本題主要考查絕對值三角不等式、簡單的線性規(guī)劃問題,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

要使函數(shù)y=ax+b有零點(diǎn),則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a,b,c滿足a2+b2+c2=1,則a2b2c2的最大值為
 
;a+b+c的最小值為
 
,3ab-3bc+2c2最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,Sn是{an}的前n項(xiàng)和,已知a7=-2,S5=30.
(1)求an;
(2)若數(shù)列{bn}滿足bn=(12-an
210-an
,Tn是{bn}的前n項(xiàng)和,求證:
Tn
bn
<2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓內(nèi)有n條兩兩相交的弦講圓最多分為f(n)個(gè)區(qū)域,通過計(jì)算f(1)、f(2)、f(3)、f(4)可猜想f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法成立的個(gè)數(shù)是( 。
b
a
f(x)dx=
n
i=1
fi)
b-a
n
;
b
a
f(x)dx=
lim
n→∞
fi)
b-a
n

b
a
f(x)dx=
lim
n→∞
n
i=1
fi)
b-a
n
;
b
a
f(x)可以是一個(gè)函數(shù)式子.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)為正數(shù)的等比數(shù)列數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}的通項(xiàng)公式bn=
n,n為偶數(shù)
n+1,n為奇數(shù)
(n∈N*),若S3=b5+1,b4是a2和a4的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求f(x)=x+
b
x
(b>0)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo)函數(shù):f(x)=(x-k)2e
x
k

查看答案和解析>>

同步練習(xí)冊答案