要使函數(shù)y=ax+b有零點(diǎn),則實(shí)數(shù)b的取值范圍是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=ax+b有零點(diǎn)可化為方程ax+b=0有解,由ax>0可確定b的取值范圍.
解答: 解:函數(shù)y=ax+b有零點(diǎn)可化為方程ax+b=0有解,
即b=-ax有解,
∵ax>0,
∴b<0;
故實(shí)數(shù)b的取值范圍是(-∞,0);
故答案為:(-∞,0).
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與方程的關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(x+
1
x
5的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AC1是正方體的一條體對(duì)角線,點(diǎn)P,Q分別為其在棱的中點(diǎn),則PQ與AC1所成的角為( 。 
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
2
+y2=1,過橢圓左焦點(diǎn)F1作傾斜角為60°的直圓交于CD兩點(diǎn),A2為橢圓的右頂點(diǎn),求△CDA2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m和直線n所成的角的大小為50°,P為空間中任意一點(diǎn),則過點(diǎn)P且與直線m和直線n所成的角都是25°的直線的條數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列An:a1,a2,…,an(n≥2)滿足|ak+1-ak|=1(k=1,2,…,n-1),則An為E數(shù)列,記S(An)=a1+a2+…+an.寫出一個(gè)滿足a1=as=0,且S(As)>0的E數(shù)列An

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖顯示.
(1)已知[30,40)、[40,50)、[50,60)三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,求a,b的值;
 (2)該電子商務(wù)平臺(tái)將年齡在[30,50)之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和為200元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由動(dòng)點(diǎn)P(x,y)向圓O:x2+y2=1引兩條切線,切點(diǎn)為A、B,若
PA
PB
=
3
2
,則動(dòng)點(diǎn)P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足|x-1|+|y-a|≤1,若2x+y的最大值是5,則實(shí)數(shù)a的值是(  )
A、2B、1C、0D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案