函數(shù)f(x)=log 
1
3
(4-x2)的單調(diào)遞減區(qū)間是( 。
A、(-2,0)
B、(0,2)
C、(-∞,-2)
D、(2,+∞)
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先判斷內(nèi)函數(shù)的單調(diào)性,同時(shí)要考慮函數(shù)的定義域,最后利用復(fù)合函數(shù)的單調(diào)性求出結(jié)果.
解答: 解:設(shè)函數(shù)g(x)=4-x2,則函數(shù)g(x)為開(kāi)口方向向下對(duì)稱(chēng)軸為x=0的拋物線(xiàn).
根據(jù)對(duì)數(shù)函數(shù)成立的條件只需滿(mǎn)足:4-x2>0
解得:-2<x<2
根據(jù)復(fù)合函數(shù)的單調(diào)性得到函數(shù)的遞減區(qū)間為:(-2,0)
故選:A
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):復(fù)合函數(shù)的單調(diào)性滿(mǎn)足同增異減的性質(zhì).同時(shí)要考慮函數(shù)的定義域.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,第二象限內(nèi)所有點(diǎn)的坐標(biāo)組成的集合,用描述法可表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中俯視圖與側(cè)視圖均為半徑是1的圓,則這個(gè)幾何體的體積是( 。
A、
π
3
B、
3
C、π
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)所有棱長(zhǎng)均為a的正四棱錐P-ABCD,還有一個(gè)所有棱長(zhǎng)均為a的正三棱錐.將此三棱錐的一個(gè)面與正四棱錐的一個(gè)側(cè)面完全重合地粘在一起,得到一個(gè)如圖所示的多面體.
(Ⅰ)證明:P,E,B,A四點(diǎn)共面;
(Ⅱ)求三棱錐A-DPE的體積;
(Ⅲ)在底面ABCD內(nèi)找一點(diǎn)M,使EM⊥面PBC,指出M的位置,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D是線(xiàn)段BC的中點(diǎn),BC=6,且|
AB
+
AC
|=|
AB
-
AC
|,則|
AD
|=( 。
A、
3
2
B、2
3
C、3
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(0,1),曲線(xiàn)C:y=logax恒過(guò)點(diǎn)B,若P是曲線(xiàn)C上的動(dòng)點(diǎn),且
AB
AP
的最小值為2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是異面直線(xiàn),
e1
,
e2
分別為取自直線(xiàn)a,b上的單位向量,且
a
=2
e1
+3
e2
,
b
=k
e1
-4
e2
,
a
b
,則實(shí)數(shù)k的值為( 。
A、-6B、6C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意的實(shí)數(shù)x,滿(mǎn)足f(2-x)=f(2+x),f(5-x)=f(5+x),且f(0)=0,則f(x)在區(qū)間[-18,18]上至少有個(gè)( 。┝泓c(diǎn).
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3,4),
b
=(x,1)且(
a
+
b
b
=|
a
|,則實(shí)數(shù)x的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案