“?x∈R,都有x2-2x+2≠0”的否定是
 
考點(diǎn):命題的否定
專題:簡(jiǎn)易邏輯
分析:利用全稱命題的否定是特稱命題寫出結(jié)果即可.
解答: 解:由于全稱命題的否定是特稱命題,
所以“?x∈R,都有x2-2x+2≠0”的否定是:?x∈R,使得x2-2x+2=0.
故答案為:?x∈R,使得x2-2x+2=0.
點(diǎn)評(píng):本題考查命題的否定關(guān)系,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3+
1
2
x2-2x
,求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
2-i
3-4i
(i是虛數(shù)單位)的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長(zhǎng)均為3的三棱錐S-ABC,若空間一點(diǎn)P滿足
SP
=x
SA
+y
SB
+z
SC
(x+y+z=1)
,則|
SP
|
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓E:
x2
16
+
y2
4
=1內(nèi)有一點(diǎn)P(2,1),則經(jīng)過P并且以P為中點(diǎn)的弦所在直線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次運(yùn)動(dòng)會(huì)中,有4名運(yùn)動(dòng)員爭(zhēng)奪3個(gè)項(xiàng)目的金牌,問最后的金牌得主一共有
 
(用數(shù)字作答)種可能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)分別為棱DD1,AB上的點(diǎn)(不含頂點(diǎn)).則下列說法正確的是
 

①A1C⊥平面B1EF;
②△B1EF在側(cè)面上的正投影是面積為定值的三角形;
③在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;
④平面B1EF與平面ABCD所成的二面角(銳角)的大小與點(diǎn)E位置有關(guān),與點(diǎn)F位置無關(guān);
⑤當(dāng)E,F(xiàn)分別為中點(diǎn)時(shí),平面B1EF與棱AD交于點(diǎn)P,則三棱錐P-DEF的體積為
1
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,已知曲線M:
x=t+2
y=1-2t
(t為參數(shù))與曲線N:
x=4cosθ
y=4sinθ
(θ為參數(shù))相交于兩個(gè)點(diǎn)A,B,則線段AB的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,過A點(diǎn)的截面AEFG分別交PB,PC,PD于點(diǎn)E,F(xiàn),G,且PB⊥AE,PD⊥AG.下列結(jié)論正確的是
 
(寫出所有正確結(jié)論的編號(hào)).
①BD∥平面AEFG;
②PC⊥平面AEFG;
③EF∥平面PAD;
④點(diǎn)A,B,C,D,E,F(xiàn),G在同一球面上;
⑤若PA=AB=1,則四棱錐O-AEFG的體積為
1
9

查看答案和解析>>

同步練習(xí)冊(cè)答案