在一次運動會中,有4名運動員爭奪3個項目的金牌,問最后的金牌得主一共有
 
(用數(shù)字作答)種可能.
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:利用分步計數(shù)原理,爭奪3個項目的金牌,即可得到結(jié)果.
解答: 解:第1個項目的金牌爭奪4種方法,第2個項目的金牌爭奪4種方法,第3個項目的金牌爭奪4種方法,
由分步計數(shù)原理可知共有4×4×4=64種方法.
故答案為:64.
點評:本題考查分步計數(shù)原理的應(yīng)用,考查基本知識的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把一根長為30cm的木條鋸成兩段,分別作為鈍角△ABC的兩邊AB和BC,且∠ABC=120°,問怎樣鋸斷才能使第三邊AC的長最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P在曲線y=x3-x+2上移動,設(shè)曲線在點P處切線的傾斜角是α,則α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,D是邊BC上一點,
AB
=
a
,
AC
=
b
,|
BD
|=
1
5
|
DC
|,則
AD
=
 
(用
a
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“?x∈R,都有x2-2x+2≠0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x=a(0<a<
π
2
)與函數(shù)f(x)=sinx和函數(shù)f(x)=cosx的圖象分別交于M(x1,y1),N(x2,y2)兩點,若MN=
7
13
,則y1+y2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=2-2i,且|z|=1,則|z-z1|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|
a
|=4,
a
b
的夾角為135°,則
a
b
的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知asinA=bsinB,那么△ABC的形狀
 
三角形.

查看答案和解析>>

同步練習(xí)冊答案