已知函數(shù)f(x)=ax2-lnx.
(I)討論函數(shù)f(x)單調(diào)性;
(Ⅱ)當(dāng)a=-
18
,0<t<2
時(shí),證明:曲線y=f(x)與其在點(diǎn)P(t,f(t))處的切線至少有兩個(gè)不同的公共點(diǎn).
分析:(Ⅰ)對(duì)原函數(shù)求導(dǎo),然后分a>0和a≤0兩種情況討論導(dǎo)函數(shù)的符號(hào),a≤0時(shí),f′(x)<0在(0,+∞)恒成立,
a>0時(shí),求導(dǎo)函數(shù)的零點(diǎn),利用導(dǎo)函數(shù)的零點(diǎn)把定義域分段,根據(jù)導(dǎo)函數(shù)在各段內(nèi)的符號(hào)判斷原函數(shù)在不同區(qū)間段內(nèi)的單調(diào)性;
(Ⅱ)利用導(dǎo)數(shù)求出曲線y=f(x)在點(diǎn)P(t,f(t))處的切線方程,然后構(gòu)造函數(shù)g(x)=f(x)-[f′(t)(x-t)+f(t)],因?yàn)辄c(diǎn)P(t,f(t))是曲線y=f(x)與切線的公共點(diǎn),只要再說明函數(shù)g(x)有除了t外的另外零點(diǎn)即可,通過對(duì)函數(shù)g(x)進(jìn)行求導(dǎo),利用函數(shù)單調(diào)性得到當(dāng)x∈(0,t)或x∈(t,2]時(shí),g(x)>g(t)=0,利用放縮法,借助與不等式說明當(dāng)x>2t+
8
t
時(shí),g(x)<0,從而說明曲線y=f(x)與其在點(diǎn)P(t,f(t))處的切線至少有兩個(gè)不同的公共點(diǎn).
解答:(Ⅰ)解:f(x)的定義域?yàn)椋?,+∞),
由f(x)=ax2-lnx,得:f′(x)=2ax-
1
x

(1)若a≤0,則f′(x)<0,f(x)在(0,+∞)是減函數(shù);
(2)若a>0,由f(x)=2ax-
1
x
=0
,得:x=
2a
2a

則當(dāng)x∈(0,
2a
2a
)時(shí),f′(x)<0,f(x)在(0,
2a
2a
)是減函數(shù);
當(dāng)x∈(
2a
2a
,+∞)時(shí),f′(x)>0,f(x)在(
2a
2a
,+∞)是增函數(shù).
(Ⅱ)證明:曲線y=f(x)在P(t,f(t))處的切線方程為y=f′(t)(x-t)+f(t),
且P為它們的一個(gè)公共點(diǎn).
當(dāng)a=-
1
8
時(shí),f(x)=-
1
8
x2-lnx
f(x)=-
1
4
x-
1
x
,
設(shè)g(x)=f(x)-[f′(t)(x-t)+f(t)],則g′(x)=f′(x)-f′(t),
則有g(shù)(t)=0,且g′(t)=0.
設(shè)h(x)=g′(x)=-
1
4
x-
1
x
-f′(t),則當(dāng)x∈(0,2)時(shí),h′(x)=-
1
4
+
1
x2
>0,
于是g′(x)在(0,2)是增函數(shù),且g′(t)=0,
所以,當(dāng)x∈(0,t)時(shí),g′(x)<0,g(x)在(0,t)是減函數(shù);
當(dāng)x∈(t,2)時(shí),g′(x)>0,g(x)在(t,2)是增函數(shù).
故當(dāng)x∈(0,t)或x∈(t,2]時(shí),g(x)>g(t)=0.
若x∈(2,+∞),則g(x)=-
1
8
x2-lnx-[f′(t)(x-t)+f(t)]
=-
1
8
x2+(
1
4
t+
1
t
)x-
1
8
t2-1-ln
x
t
<-
1
8
x2+(
1
4
t+
1
t
)x-
1
8
t2-1=-
1
8
x(x-2t-
8
t
)-
1
8
t2-1.
當(dāng)x>2t+
8
t
時(shí),g(x)<-
1
8
t2-1<0.
所以在區(qū)間(2,2t+
8
t
)至少存在一個(gè)實(shí)數(shù)x0>2,使g(x0)=0.
因此曲線y=f(x)與其在點(diǎn)P(t,f(t))處的切線至少有兩個(gè)不同的公共點(diǎn).
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,考查了函數(shù)圖象的交點(diǎn)問題,對(duì)于本題(Ⅱ)的證明,涉及到構(gòu)造函數(shù),特別是證明當(dāng)x>2時(shí)g(x)<0,用到了不等式證明中的放縮法,是難度較大題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案