(13分)
(1)寫出a2, a3, a4的值,并猜想數(shù)列{an}的通項公式;
(2)用數(shù)學歸納法證明你的結論;

;
(2)證明:見解析。
本試題主要是考查哦數(shù)列的通項公式的求解和數(shù)學歸納法的綜合運用。
(1)運用賦值的思想得到前幾項,然后猜想通項公式。
(2)運用數(shù)學歸納法來分兩步證明,注意證明要用到假設。
………4分
………………………………………………………6分
(2)證明:(i)易知,n=1時,猜想正確。………………………………………………7分
,……………………8分

這說明,n=k+1時猜想正確!11分
 …………………………13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-x,數(shù)列{an}滿足條件:a1≥1,an+1≥f'(an+1).試比較+++…+與1的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
某班一信息奧賽同學編了下列運算程序,將數(shù)據(jù)輸入滿足如下性質:
①輸入1時,輸出結果是
②輸入整數(shù)時,輸出結果是將前一結果先乘以3n-5,再除以3n+1.
(1)  求f(2),f(3),f(4);
(2) 試由(1)推測f(n)(其中)的表達式,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題8分)已知數(shù)列中,,且
(1)求,的值;
(2)寫出數(shù)列的通項公式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù),數(shù)列滿足:,,
(1)當時,求數(shù)列的通項公式;
(2)在(1)的條件下,證明對有:
(3)若,且對,有,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在用數(shù)學歸納法證明時,在驗證當時,等式左邊為(  )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用數(shù)學歸納法證明“”()時,從“”時,左邊的式子之比是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

用數(shù)學歸納法證明:“”,第一步在驗證時,左邊應取的式子是____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,則對于,
          

查看答案和解析>>

同步練習冊答案