精英家教網 > 高中數學 > 題目詳情

【題目】數列{an}滿足a1+a2+a3+…an=2n﹣an(n∈N+).數列{bn}滿足bn= ,則{bn}中的最大項的值是

【答案】
【解析】解:由a1+a2+a3+…an=2n﹣an , 得Sn=2n﹣an , 取n=1,求得a1=1;
由Sn=2n﹣an , 得Sn1=2(n﹣1)﹣an1(n≥2),
兩式作差得an=2﹣an+an1 , 即 (n≥2),
又a1﹣2=﹣1≠0,
∴數列{an﹣2}構成以 為公比的等比數列,
,
則bn= = ,
當n=1時, ,當n=2時,b2=0,當n=3時, ,
而當n≥3時, ,
∴{bn}中的最大項的值是
所以答案是:
【考點精析】關于本題考查的數列的通項公式,需要了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】把圓分成個扇形,設用4種顏色給這些扇形染色,每個扇形恰染一種顏色,并且要求相鄰扇形的顏色互不相同,設共有種方法.

(1)寫出,的值;

(2)猜想 ,并用數學歸納法證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某手機廠商推出一款6吋大屏手機,現對500名該手機用戶(200名女性,300名男性)進行調查,對手機進行評分,評分的頻數分布表如下:

女性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

頻數

20

40

80

50

10

男性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

頻數

45

75

90

60

30

(Ⅰ)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評分更穩(wěn)定(不計算具體值,給出結論即可);

(Ⅱ)根據評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是邊長為2的菱形,平面,

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數的圖象向右平移個單位,再將所有點的橫坐標伸長到原來的2倍,得到函數y=g(x)的圖象,則下列關于函數y=g(x)的說法正確的序號是____

(1)當時,函數有最小值; (2)圖象關于直線對稱;

(3)圖象關于點對稱; (4)在上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進行了“本屆奧運會中國隊表現”的滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了50人,具體的調查結果如表:

班號

一班

二班

三班

四班

五班

六班

頻數

5

9

11

9

7

9

滿意人數

4

7

8

5

6

6


(1)在高三年級全體學生中隨機抽取一名學生,由以上統(tǒng)計數據估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現”不滿意的人數為ξ,求隨機變量ξ的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值為1.
(1)求a+b的值;
(2)若 恒成立,求實數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)經過一年的新農村建設,農村的經濟收入增加了一倍.實現翻番.為更好地了解該地區(qū)農村的經濟收入變化情況,統(tǒng)計了該地區(qū)新農村建設前后農村的經濟收入構成比例.得到如下餅圖:

則下面結論中不正確的是

A. 新農村建設后,種植收入減少

B. 新農村建設后,其他收入增加了一倍以上

C. 新農村建設后,養(yǎng)殖收入增加了一倍

D. 新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的總和超過了經濟收入的一半

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家電專賣店試銷A、B、C三種新型空調,連續(xù)五周銷售情況如表所示:

第一周 第二周 第三周 第四周 第五周

A型數量/臺 12 8 15 22 18

B型數量/臺 7 12 10 10 12

C型數量/臺

(I)求A型空調平均每周的銷售數量;

(Ⅱ)為跟蹤調查空調的使用情況,從該家電專賣店第二周售出的A、B型空調銷售記錄中,隨機抽取一臺,求抽到B型空調的概率;

(III)已知C型空調連續(xù)五周銷量的平均數為7,方差為4,且每周銷售數量互不相同,求C型空調這五周中的最大銷售數量。(只需寫出結論)

查看答案和解析>>

同步練習冊答案