精英家教網 > 高中數學 > 題目詳情
已知橢圓的焦距為,則實數          
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,兩焦點之間的距離為4.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓的右頂點作直線交拋物線于A、B兩點,
(1)求證:OA⊥OB;
(2)設OA、OB分別與橢圓相交于點D、E,過原點O作直線DE的垂線OM,垂足為M,證明|OM|為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知兩點,,曲線上的動點滿足,直線與曲線交于另一點
(Ⅰ)求曲線的方程;
(Ⅱ)設,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在△中,邊長為,邊上的中線長之和等于.若以邊中點為原點,邊所在直線為軸建立直角坐標系,則△的重心的軌跡方程為:                   

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,橢圓的右焦點為,右準線為

(1)求到點和直線的距離相等的點的軌跡方程。
(2)過點作直線交橢圓于點,又直線于點,若
求線段的長;
(3)已知點的坐標為,直線交直線于點,且和橢圓的一個交點為點,是否存在實數,使得,若存在,求出實數;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓:的右焦點與拋物線的焦點相同,且的離心率,又為橢圓的左右頂點,其上任一點(異于).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交直線于點,過作直線的垂線交軸于點,求的坐標;
(Ⅲ)求點在直線上射影的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知A、D分別為橢圓E的左頂點與上頂點,橢圓的離心率,F、F2為橢圓的左、右焦點,點P是線段AD上的任一點,且的最大值為1 .
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且OAOBO為坐標原點),若存在,求出該圓的方程;若不存在,請說明理由;
(3)設直線l與圓相切于A1,且l與橢圓E有且僅有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如果函數y=|x|-1的圖象與方程的曲線恰好有兩個不同的公共點,則實數的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知A1,A2,B是橢圓=1(a>b>0)的頂點(如圖),直線l與橢圓交于異于頂點的P,Q兩點,且l∥A2B,若橢圓的離心率是,且|A2B|=
(1)求此橢圓的方程;
(2)設直線A1P和直線BQ的傾斜角分別為α,β,試判斷α+β是否為定值?若是,求出此定值;若不是,說明理由。

查看答案和解析>>

同步練習冊答案