【題目】某市四所重點中學(xué)進(jìn)行高二期中聯(lián)考,共有5000名學(xué)生參加,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機地抽出若干名學(xué)生在這次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
① | ② | |
0.050 | ||
0.200 | ||
36 | 0.300 | |
0.275 | ||
12 | ③ | |
0.050 | ||
合計 | ④ |
(1)根據(jù)上面的頻率分布表,推出①②③④處的數(shù)字分別為 , , , .
(2)補全上的頻率分布直方圖.
(3)根據(jù)題中的信息估計總體:
①成績在120分及以上的學(xué)生人數(shù);
②成績在的頻率.
【答案】(1)3; 0.025; 0.100; 1(2)見解析(3);
【解析】
(1)根據(jù)頻率與頻數(shù)關(guān)系,可先求得③;再根據(jù)④對應(yīng)的數(shù)字為1,可求得②,再求得①即可.
(2)結(jié)合頻率分布表,即可求得各組對應(yīng)的,即可畫出頻率分布直方圖.
(3)由頻率分布表可知成績在120分及以上的頻率,結(jié)合總體數(shù)量即可得解;將內(nèi)各組的頻率求和,即可得成績在的頻率.
(1)在內(nèi)的人數(shù)為36人,頻率為0.300.
所以抽取的人數(shù)為人
在有12人,所以對應(yīng)的頻率為,故③對應(yīng)的數(shù)字為0.100;
根據(jù)所有頻率和為1,可知④對應(yīng)的數(shù)字為1.則②對應(yīng)的數(shù)字為
所以①對應(yīng)的人數(shù)為
故①②③④處的數(shù)字分別為3; 0.025; 0.100; 1
(2)根據(jù)頻率分布表,可得頻率分布直方圖如下圖所示:
(3)①根據(jù)頻率分布表及抽取總?cè)藬?shù)為120,可得成績在120分及以上的學(xué)生人數(shù)為
人
②根據(jù)頻率分布表,將內(nèi)各組的頻率求和可得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)作為藍(lán)色海洋教育特色學(xué)校,隨機抽取100名學(xué)生,進(jìn)行一次海洋知識測試,按測試成績(假設(shè)考試成績均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.
(1)求測試成績在[80,85)內(nèi)的頻率;
(2)從第三、四、五組學(xué)生中用分層抽樣的方法抽取6名學(xué)生組成海洋知識宣講小組,定期在校內(nèi)進(jìn)行義務(wù)宣講,并在這6名學(xué)生中隨機選取2名參加市組織的藍(lán)色海洋教育義務(wù)宣講隊,求第四組至少有1名學(xué)生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線過點.
① 求實數(shù)的值;
② 設(shè)函數(shù),當(dāng)時,試比較與的大;
(2)若函數(shù)有兩個極值點,(),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著中國經(jīng)濟的加速騰飛,現(xiàn)在手有余錢的中國家庭數(shù)量越來越多,在房價居高不下股市動蕩不定的形勢下,為了讓自己的財富不縮水,很多家庭選擇了投資理財.為了了解居民購買理財產(chǎn)品的情況,理財公司抽樣調(diào)查了該市2018年10戶家庭的年收入和年購買理財產(chǎn)品支出的情況,統(tǒng)計資料如下表:
年收入x(萬元) | 20 | 40 | 40 | 60 | 60 | 60 | 70 | 70 | 80 | 100 |
年理財產(chǎn)品支出y(萬元) | 9 | 14 | 16 | 20 | 21 | 19 | 18 | 21 | 22 | 23 |
(1)由該樣本的散點圖可知y與x具有線性相關(guān)關(guān)系,請求出回歸方程;(求時利用的準(zhǔn)確值,,的最終結(jié)果精確到0.01)
(2)若某家庭年收入為120萬元,預(yù)測某年購買理財產(chǎn)品的支出.(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產(chǎn)生0到9之間取整數(shù)的隨機數(shù),用0,1,2 沒有擊中,用3,4,5,6,7,8,9 表示擊中,以 4個隨機數(shù)為一組, 代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
7525,0293,7140,9857,0347,4373,8638,7815,1417,5550
0371,6233,2616,8045,6011,3661,9597,7424,7610,4281
根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰好命中3次的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀(jì)念品.
(Ⅰ)試確定, 的值,并估計每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀(jì)念品的數(shù)量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,側(cè)面為正三角形,側(cè)面底面,為的中點.
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新型冠狀病毒感染的肺炎疫情防控形勢嚴(yán)峻.口罩的市場需求一直居高不下.為了保障防疫物資供應(yīng),濰坊的口罩企業(yè)加足馬力保生產(chǎn),上演了一場與時間賽跑的“防疫阻擊戰(zhàn)”.濰坊市坊子區(qū)一家口罩生產(chǎn)企業(yè)擁有1000平方米潔凈車間,配備國際領(lǐng)先的自動化生產(chǎn)線5條,技術(shù)骨干20余人.自疫情發(fā)生以來,該企業(yè)積極響應(yīng)政府號召,保障每天生產(chǎn)一次性無紡布健康防護(hù)口罩5萬只左右.現(xiàn)從生產(chǎn)的大量口罩中抽取了100只作為樣本,檢測一項質(zhì)量指標(biāo)值,該項質(zhì)量指標(biāo)值落在區(qū)間[20,40)內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是樣本的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)企業(yè)將不合格品全部銷毀后,對合格品進(jìn)行等級細(xì)分:質(zhì)量指標(biāo)值落在區(qū)間[25,30)內(nèi)的定為一等品,每件售價2.4元;質(zhì)量指標(biāo)值落在區(qū)間[20,25)或[30,35)內(nèi)的定為二等品,每件售價為1.8元;其他的合格品定為三等品,每件售價為1.2元.
用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機購買2只口罩支付的費用為X(單位:元).求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒子內(nèi)有3個不同的黑球,5個不同的白球.
(1)全部取出排成一列,3個黑球兩兩不相鄰的排法有多少種?
(2)從中任取6個球,白球的個數(shù)不比黑球個數(shù)少的取法有多少種?
(3)若取一個白球記2分,取一個黑球記1分,從中任取5個球,使總分不少于7分的取法有多少種?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com