(本小題8分)已知圓C: 及直

(1)證明:不論m取何值,直線l與圓C恒相交;

(2)求直線l被圓C截得的弦長最短時的直線方程.

 

【答案】

(1)見解析;(2)y=x-1。

【解析】本題考查直線與圓相交的證明,考查直線被圓截得的線段的最短長度以及此時直線的方程.考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強,難度大,有一定的探索性,對數(shù)學(xué)思維能力要求較高,是高考的重點.解題時要認真審題,仔細解答.

解:由

∴圓C的圓心為(2,3),半徑為2……………2分

(1)由

∴不論m取何值,直線l恒過點P(3,2)…………….4分

∴點P(3,2)在圓C內(nèi)……………3分

所以不論m取何值,直線l與圓C恒相交…………….5分

(2)當(dāng)直線l垂直CP時,直線l被圓C截得的弦長最短

…………….7分

所以所求的直線方程為y=x-1…………….8分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆甘肅蘭州一中高一下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題8分)已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖南省衡陽市高二學(xué)業(yè)水平模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題8分)已知圓C的圓心是直線的交點且與直線相切,求圓C的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:洞口四中數(shù)學(xué)必修2模塊結(jié)業(yè)考試試卷 題型:解答題

19.(本小題滿分8分)已知,過點M(-1,1)的直線l被圓Cx2 + y2-2x + 2y-14 = 0所截得的弦長為4,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南中學(xué)高一下學(xué)期期末測試數(shù)學(xué) 題型:解答題

(本小題滿分8分)

已知圓的半徑為,圓心在直線上,圓被直線截得的弦長為,求圓的方程.

 

查看答案和解析>>

同步練習(xí)冊答案