已知函數(shù)f(x)=ax2+lnx(a∈R).
(1)當時,求f(x)在區(qū)間[1,e]上的最大值和最小值;
(2)如果函數(shù)g(x),f1(x),f2(x),在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),
f2(x)的“活動函數(shù)”.
已知函數(shù)
若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“活動函數(shù)”,
求a的取值范圍.
【答案】分析:(1)由題意得 ,>0,∴f(x)在區(qū)間[1,e]上為增函數(shù),即可求出函數(shù)的最值.
(2)由題意得:令 <0,對x∈(1,+∞)恒成立,且h(x)=f1(x)-f(x)=<0對x∈(1,+∞)恒成立,分類討論當 時兩種情況求函數(shù)的最大值,可得到a的范圍.又因為h′(x)=-x+2a-=<0,h(x)在(1,+∞)上為減函數(shù),可得到a的另一個范圍,綜合可得a的范圍.
解答:解:(1)當 時,,;
對于x∈[1,e],有f'(x)>0,∴f(x)在區(qū)間[1,e]上為增函數(shù),

(2)在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“活動函數(shù)”,則f1(x)<f(x)<f2(x)
<0,對x∈(1,+∞)恒成立,
且h(x)=f1(x)-f(x)=<0對x∈(1,+∞)恒成立,

1)若 ,令p′(x)=0,得極值點x1=1,
當x2>x1=1,即 時,在(x2,+∞)上有p′(x)>0,
此時p(x)在區(qū)間(x2,+∞)上是增函數(shù),并且在該區(qū)間上有p(x)∈(p(x2),+∞),不合題意;
當x2<x1=1,即a≥1時,同理可知,p(x)在區(qū)間(1,+∞)上,有p(x)∈(p(1),+∞),也不合題意;
2)若 ,則有2a-1≤0,此時在區(qū)間(1,+∞)上恒有p′(x)<0,
從而p(x)在區(qū)間(1,+∞)上是減函數(shù);
要使p(x)<0在此區(qū)間上恒成立,只須滿足 ,
所以 ≤a≤
又因為h′(x)=-x+2a-=<0,h(x)在(1,+∞)上為減函數(shù),
h(x)<h(1)=+2a≤0,所以a≤
綜合可知a的范圍是[,].
點評:本題考查的知識點是利用導數(shù)求函數(shù)的最值,利用最值解決恒成立問題,二對于新定義題型關鍵是弄清新概念與舊知識點之間的聯(lián)系即可,結合著我們已學的知識解決問題,這是高考考查的熱點之一.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案