解:(Ⅰ)∵S
n+1=3S
n+2,
∴S
n+1+1=3(S
n+1)
∵S
1+1=2+1=3
∴{S
n+1}是首項(xiàng)為3公比為3的等比數(shù)列.
(Ⅱ)∵{S
n+1}是首項(xiàng)為3公比為3的等比數(shù)列.
∴S
n+1=3×3
n-1=3
n,
∴S
n=3
n-1,
S
n-1=3
n-1-1,
∴a
n=S
n-S
n-1=3
n-3
n-1=
.
(Ⅲ)證明:∵S
n=3
n-1,
,
∴b
n=
=
=
=
,
設(shè)
,
b
1+b
2+…+b
n<c
1+c
2+c
3+…+c
n=
<
(1+
+
+…+
)
=
=
<1.
∴b
1+b
2+…+b
n<1.
分析:(Ⅰ)由S
n+1=3S
n+2,知S
n+1+1=3(S
n+1),由此能夠證明{S
n+1}是等比數(shù)列.
(Ⅱ)由S
n=3
n-1,得到S
n-1=3
n-1-1,由此能求出a
n=S
n-S
n-1=3
n-3
n-1=
.
(Ⅲ)b
n=
=
,由此入手,能夠證明b
1+b
2+…+b
n<1.
點(diǎn)評(píng):本題考查數(shù)列與不等式的綜合,綜合題強(qiáng),難度大,計(jì)算繁瑣,易出錯(cuò).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意放縮法的合理運(yùn)用.