【題目】設(shè)函數(shù),其中為實數(shù).
(1)已知函數(shù)是奇函數(shù),直線是曲線的切線,且, ,求直線的方程;
(2)討論的單調(diào)性.
【答案】(1) 6x+3y﹣1=0或2x+y+5=0 (2)見解析
【解析】試題分析:(1)根據(jù)函數(shù)g(x)=f(x)﹣f′(x)是奇函數(shù)可求出a的值,然后根據(jù)l1⊥l2可求出l1的斜率,從而可求出切點坐標(biāo),求出切線方程;
(2)先求函數(shù)f(x)的導(dǎo)函數(shù)f′(x),再解不等式f′(x)>0和f′(x)<0即可得函數(shù)的單調(diào)區(qū)間,本題需討論a與﹣和0的大小關(guān)系.
試題解析:
解:(1)∵,
∴f′(x)=ax2﹣x﹣(a+1)
則g(x)=f(x)﹣f′(x)=﹣ax2+x+(a+1)=
∵函數(shù)g(x)=f(x)﹣f′(x)是奇函數(shù)∴+a=0即a=﹣則f′(x)=﹣x2﹣x﹣
∵l1⊥l2,l2:x﹣2y﹣8=0
∴l(xiāng)1的斜率為﹣2,即f′(x)=﹣x2﹣x﹣=﹣2解得x=1或﹣3
即切點為(1,﹣)或(﹣3,1)
∴直線l1的方程為6x+3y﹣1=0或2x+y+5=0
(2)f′(x)=ax2﹣x﹣(a+1)=(ax﹣a﹣1)(x+1)
當(dāng)a=0時,f′(x)=﹣x﹣1,當(dāng)x∈(﹣∞,﹣1)時,f′(x)>0,當(dāng)x∈(﹣1,+∞)時,f′(x)<0
∴函數(shù)f(x)的單調(diào)增區(qū)間為(﹣∞,﹣1),單調(diào)遞減區(qū)間為(﹣1,+∞)
當(dāng)a>0時,當(dāng)x∈(﹣∞,﹣1)時,f′(x)>0,當(dāng)x∈(﹣1,1+)時,f′(x)<0,當(dāng)x∈(1+,+∞)時,f′(x)>0
∴函數(shù)f(x)的單調(diào)增區(qū)間為(﹣∞,﹣1),(1+,+∞)單調(diào)遞減區(qū)間為(﹣1,1+)
當(dāng)﹣<a<0時,當(dāng)x∈(﹣∞,1+)時,f′(x)<0,當(dāng)x∈(1+,﹣1)時,f′(x)>0,當(dāng)x∈(﹣1,+∞)時,f′(x)<0
∴函數(shù)f(x)的單調(diào)增區(qū)間為(1+,﹣1)單調(diào)遞減區(qū)間為(﹣∞,1+
當(dāng)a=﹣時,f′(x)≤0恒成立,即函數(shù)單調(diào)遞減區(qū)間為(﹣∞,+∞)
當(dāng)a<﹣時,當(dāng)x∈(﹣∞,﹣1)時,f′(x)<0,當(dāng)x∈(﹣1,1+)時,f′(x)>0,當(dāng)x∈(1+,+∞)時,f′(x)<0
∴函數(shù)f(x)的單調(diào)增區(qū)間為(﹣1,1+)單調(diào)遞減區(qū)間為(﹣∞,﹣1),(1+,+∞)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 先把高二年級的2000名學(xué)生編號為1到2000,再從編號為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號為,然后抽取編號為, , 的學(xué)生,這樣的抽樣方法是系統(tǒng)抽樣法
B. 線性回歸直線一定過樣本中心點
C. 若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1
D. 若一組數(shù)據(jù)1、、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,點為短軸的一個端點, ,若點在橢圓上,則點稱為點的一個“橢點”.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點,且兩點的“橢點”分別為,以為直徑的圓經(jīng)過坐標(biāo)原點,試求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= .
(1)求函數(shù)f(x)在[0,2]上得單調(diào)區(qū)間;
(2)當(dāng)m=0,k∈R時,求函數(shù)g(x)=f(x)﹣kx2在R上零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)當(dāng)p=1時,若拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.求線段PQ的中點M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=sinx+ cosx(x∈R),先將y=f(x)的圖象上所有點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再將得到的圖象上所有點向右平行移動θ(θ>0)個單位長度,得到的圖象關(guān)于直線x= 對稱,則θ的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com