【題目】已知函數(shù) ),且對任意,都有.

(Ⅰ)用含的表達式表示;

(Ⅱ)若存在兩個極值點 ,且,求出的取值范圍,并證明

(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.

【答案】(1)(2)見解析(3)見解析

【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導數(shù),要求函數(shù)有兩個極值點,只需內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).

試題解析:根據(jù)題意:令,可得,

所以,

經(jīng)驗證,可得當時,對任意,都有,

所以.

可知,且,

所以 ,

,要使存在兩個極值點, ,則須有有兩個不相等的正數(shù)根,所以

解得或無解,所以的取值范圍,可得,

由題意知 ,

,則

而當時, ,即,

所以上單調(diào)遞減,

所以

時,

因為

,

時, 的對稱軸 , ,所以.

,可得,此時, 上單調(diào)遞減, 上單調(diào)遞增, 上單調(diào)遞減,所以 最多只有三個不同的零點.

又因為,所以上遞增,即時, 恒成立.

根據(jù)(2)可知,所以,即,所以,使得

,得,又, ,

所以恰有三個不同的零點: ,1,

綜上所述, 恰有三個不同的零點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列是有關(guān)三角形ABC的幾個命題,
①若tanA+tanB+tanC>0,則△ABC是銳角三角形;
②若sin2A=sin2B,則△ABC是等腰三角形;
③若( + =0,則△ABC是等腰三角形;
④若cosA=sinB,則△ABC是直角三角形;
其中正確命題的個數(shù)是( )
A..1
B..2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC內(nèi)一點O滿足 = ,若△ABC內(nèi)任意投一個點,則該點△OAC內(nèi)的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知B=45°,D是BC上一點,AD=5,AC=7,DC=3,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小華準備購買一臺售價為5000元的電腦,采用分期付款方式,并在一年內(nèi)將款全部付清,商場提出的 付款方式為:購買后二個月第一次付款,再過二個月第二次付款…,購買后12個月第六次付款,每次付
款金額相同,約定月利率為0.8%每月利息按復利計算.求小華每期付款的金額是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )(x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O是坐標原點,兩定點A,B滿足| |=| |= =2,則點集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在區(qū)間[﹣1,1]上的奇函數(shù),且f(﹣1)=1,若m,n∈[﹣1,1],m+n≠0時,有 <0.
(1)解不等式f(x+ )<f(1﹣x);
(2)若f(x)≤t2﹣2at+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認為“體育迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求分布列,期望和方差.

附:

查看答案和解析>>

同步練習冊答案