【題目】已知函數(shù)(, ),且對(duì)任意,都有.
(Ⅰ)用含的表達(dá)式表示;
(Ⅱ)若存在兩個(gè)極值點(diǎn), ,且,求出的取值范圍,并證明;
(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說明理由.
【答案】(1)(2)見解析(3)見解析
【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù).
試題解析:(Ⅰ)根據(jù)題意:令,可得,
所以,
經(jīng)驗(yàn)證,可得當(dāng)時(shí),對(duì)任意,都有,
所以.
(Ⅱ)由(Ⅰ)可知,且,
所以 ,
令,要使存在兩個(gè)極值點(diǎn), ,則須有有兩個(gè)不相等的正數(shù)根,所以
或
解得或無解,所以的取值范圍,可得,
由題意知 ,
令 ,則 .
而當(dāng)時(shí), ,即,
所以在上單調(diào)遞減,
所以
即時(shí), .
(Ⅲ)因?yàn)?/span> , .
令得, .
由(Ⅱ)知時(shí), 的對(duì)稱軸, , ,所以.
又,可得,此時(shí), 在上單調(diào)遞減, 上單調(diào)遞增, 上單調(diào)遞減,所以 最多只有三個(gè)不同的零點(diǎn).
又因?yàn)?/span>,所以在上遞增,即時(shí), 恒成立.
根據(jù)(2)可知且,所以,即,所以,使得.
由,得,又, ,
所以恰有三個(gè)不同的零點(diǎn): ,1, .
綜上所述, 恰有三個(gè)不同的零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列是有關(guān)三角形ABC的幾個(gè)命題,
①若tanA+tanB+tanC>0,則△ABC是銳角三角形;
②若sin2A=sin2B,則△ABC是等腰三角形;
③若( + ) =0,則△ABC是等腰三角形;
④若cosA=sinB,則△ABC是直角三角形;
其中正確命題的個(gè)數(shù)是( )
A..1
B..2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)一點(diǎn)O滿足 = ,若△ABC內(nèi)任意投一個(gè)點(diǎn),則該點(diǎn)△OAC內(nèi)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小華準(zhǔn)備購買一臺(tái)售價(jià)為5000元的電腦,采用分期付款方式,并在一年內(nèi)將款全部付清,商場(chǎng)提出的 付款方式為:購買后二個(gè)月第一次付款,再過二個(gè)月第二次付款…,購買后12個(gè)月第六次付款,每次付
款金額相同,約定月利率為0.8%每月利息按復(fù)利計(jì)算.求小華每期付款的金額是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )(x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時(shí)相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足| |=| |= =2,則點(diǎn)集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在區(qū)間[﹣1,1]上的奇函數(shù),且f(﹣1)=1,若m,n∈[﹣1,1],m+n≠0時(shí),有 <0.
(1)解不等式f(x+ )<f(1﹣x);
(2)若f(x)≤t2﹣2at+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求分布列,期望和方差.
附:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com