2.如果橢圓的對稱軸為坐標(biāo)軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且a-c=$\sqrt{3}$,那么橢圓的方程是$\frac{x^2}{12}+\frac{y^2}{9}=1$.

分析 由題意畫出圖形,結(jié)合圖形可得$b=\sqrt{3}c$,再由已知a-c=$\sqrt{3}$,隱含條件a2=b2+c2聯(lián)立方程組求得a,b的值,則橢圓方程可求.

解答 解:如圖,
由已知的正三角形,可得$b=\sqrt{3}c$,
聯(lián)立$\left\{\begin{array}{l}b=\sqrt{3}c\\ a-c=\sqrt{3}\\{a^2}={b^2}+{c^2}\end{array}\right.$,解得$\left\{\begin{array}{l}b=3\\ a=2\sqrt{3}\end{array}\right.$,
∴橢圓的方程是$\frac{x^2}{12}+\frac{y^2}{9}=1$.
故答案為:$\frac{x^2}{12}+\frac{y^2}{9}=1$.

點評 本題考查橢圓方程的求法,考查了橢圓的簡單性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個不共線的單位向量,若$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$與k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$垂直,則實數(shù)k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知p:1<2x<8;q:不等式x2-mx+4≥0恒成立,若¬p是¬q的必要條件,求實數(shù)m的取值范圍m≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知正項等差數(shù)列{an}滿足a1+a2015=2,則$\frac{1}{a_2}+\frac{1}{{{a_{2014}}}}$的最小值為( 。
A.1B.2C.2014D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.點A(1,2)到直線3x-4y-5=0的距離是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.甲、乙兩個同學(xué)下棋,若甲獲勝的概率為0.2,甲、乙下和棋的概率為0.5,則甲不輸?shù)母怕蕿?.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.當(dāng)m∈[1,5)時,函數(shù)f(x)=(m-1)x2-(m-1)x+1的圖象總在x軸上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an}的前n項和為Sn,S1,S3,S2成等差數(shù)列,且a1-a3=3,
(Ⅰ)求{an}的通項公式;
(Ⅱ)求Sn,并求滿足Sn≤2的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)=xa,g(x)=1nx.
(1)若a=1,求證:當(dāng)x>0時.f(x)≥g(x)+1;
(2)若a∈R,求關(guān)于x的方程f(x)=g(x)實根的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案