(14分)已知函數(shù)

(1) 判斷并證明函數(shù)在區(qū)間 上的單調(diào)性

(2)若,求參數(shù)的取值范圍。

 

(1) 在區(qū)間 上單調(diào)遞增,證明見(jiàn)解析;(2)

【解析】

試題分析:(1)利用函數(shù)單調(diào)性定義可判斷單調(diào)遞增.

(2) 依題意恒成立即恒成立 .由(1)可知,

在區(qū)間 上單調(diào)遞增,故的最小值為2,

試題解析: (1) 在區(qū)間 上單調(diào)遞增.證明如下:

任取>,則,,

上單調(diào)遞增.

(2)依題意恒成立即恒成立, 由(1)可知,

在區(qū)間 上單調(diào)遞增,所以,所以的取值范圍為.

考點(diǎn):函數(shù)單調(diào)性的判斷及證明和恒成立問(wèn)題的解法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省高一9月綜合檢測(cè)數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)分別是上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是

A.是偶函數(shù) B.是奇函數(shù)

C.是偶函數(shù) D.是奇函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省高一10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知.則f(x)=( )

A.f(x)=x+2 B.f(x)=x+2(x≥0)

C.f(x)=x2-1 D.f(x)=x2-1(x≥1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省高一上學(xué)期第一次階段考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省高一上學(xué)期第一次階段考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖設(shè)全集U為整數(shù)集,集合A={x∈N|1≤x≤8},B={0,1,2},則圖中陰影部分表示的集合的真子集的個(gè)數(shù)為( )

A.3 B.4 C.7 D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省高一上學(xué)期階段一考試數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)在區(qū)間上單調(diào)遞增,則a的取值范圍是

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省高一上學(xué)期階段一考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)f (x)的定義域是 [ 0 , 2 ] , 則函數(shù)y = f (x+1)+f (2x-1)的定義域是( )

A [-1 , 1] B [, 1 ] C [,] D [ 0 , ]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省高二上學(xué)期期初考試?yán)頂?shù)學(xué)卷(解析版) 題型:填空題

已知數(shù)列滿足,且,,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年山西省校高一上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù)y=x2+(2a-1)x+1在區(qū)間(-∞,2上是減函數(shù),則實(shí)數(shù)a的取值范圍是( )

A.,+∞) B.(-∞,- C.,+∞) D.(-∞,

 

查看答案和解析>>

同步練習(xí)冊(cè)答案