19.已知A(2,0),M是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(其中a>1)的右焦點,P是橢圓C上的動點.
(Ⅰ)若M與A重合,求橢圓C的離心率;
(Ⅱ)若a=3,求|PA|的最大值與最小值.

分析 (Ⅰ)由題意可知:c=2,又b=1,則a2=b2+c2=5,求得a,即可橢圓C的離心率;
(Ⅱ)當a=3,求得橢圓方程,丨PA丨2=(x-2)2+y2═$\frac{8}{9}$(x-$\frac{9}{4}$)2+$\frac{1}{2}$,(-3≤x≤3),根據(jù)二次函數(shù)圖象及性質,即可求得|PA|的最大值與最小值.

解答 解:(Ⅰ)由條件可知c=2,又b=1,
∴a2=b2+c2=4+1=5,即a=$\sqrt{5}$,
∴離心率為e=$\frac{c}{a}$=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$;…(4分)
(Ⅱ)若a=3,則橢圓方程為$\frac{{x}^{2}}{9}+{y}^{2}=1$,設P(x,y),
則丨PA丨2=(x-2)2+y2=(x-2)2+1-$\frac{{x}^{2}}{9}$=$\frac{8}{9}$(x-$\frac{9}{4}$)2+$\frac{1}{2}$,(-3≤x≤3)…(8分)
故當x=$\frac{9}{4}$時,丨PA丨min=$\frac{\sqrt{2}}{2}$;
當x=-3時,丨PA丨max=5.…(12分)(若未說明x的取值扣1分)

點評 本題考查橢圓的標準方程及簡單幾何性質,考查二次函數(shù)性質及最值,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設全集I是實數(shù)集R,M={x|x≥3}與N={x|$\frac{x-3}{x-1}$≤0}都是I的子集(如圖所示),則陰影部分所表示的集合為( 。
A.{x|1<x<3}B.{x|1≤x<3}C.{x|1<x≤3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.方程2x+3x+5x=7x共有( 。﹤不同的實根.
A.0B.1C.2D.無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(1,-11).
(1)求a,b的值;
(2)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知O為坐標原點,F(xiàn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{16}$=1(a>0)的左焦點,A,B分別為C的左右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則a=( 。
A.3$\sqrt{2}$B.2$\sqrt{5}$C.2$\sqrt{6}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在平面區(qū)域M={(x,y)|$\left\{\begin{array}{l}{y≥x}\\{x≥0}\\{x+y≤2}\end{array}\right.$}內隨機取一點P,則點P在圓x2+y2=2內部的概率(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b≠1},若集合A∩B=∅,則實數(shù)a的取值范圍是( 。
A.RB.(-∞,1)C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若曲線y=1+logax(a>0且a≠1)在點(1,1)處的切線經(jīng)過坐標原點,則a=e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),其導函數(shù)為f'(x),且x<0時2f(x)+xf'(x)<0恒成立,則a=f(1),b=2014f($\sqrt{2014}$),c=2015f($\sqrt{2015}$)的大小關系為( 。
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

同步練習冊答案