如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000 cm2,四周空白的寬度為10 cm,兩欄之間的中縫空白的寬度為5 cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最。
解法1:設(shè)矩形欄目的高為a cm,寬為b cm,則ab=9000. ① 廣告的高為a+20,寬為2b+25,其中a>0,b>0. 廣告的面積S=(a+20)(2b+25) 。2ab+40b+25a+500=18500+25a+40b ≥18500+2=18500+ 當(dāng)且僅當(dāng)25a=40b時等號成立,此時b=,代入①式得a=120,從而b=75. 即當(dāng)a=120,b=75時,S取得最小值24500. 故廣告的高為140 cm,寬為175 cm時,可使廣告的面積最。 解法2:設(shè)廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x-20,其中x>20,y>25 兩欄面積之和為2(x-20),由此得y= 廣告的面積S=xy=x()=x, 整理得S= 因為x-20>0,所以S≥2 當(dāng)且僅當(dāng)時等號成立, 此時有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175, 即當(dāng)x=140,y=175時,S取得最小值24500, 故當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小. 本小題主要考查根據(jù)實際問題建立數(shù)學(xué)模型,以及運用函數(shù)、不等式等知識解決實際問題的能力.(滿分12分) |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷文)(本不題滿分12分)
如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本不題滿分12分) 如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省泰安市高三12月質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三上學(xué)期統(tǒng)考二文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分13分)
如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為四周空白的寬度為,兩欄之間的中縫空白寬度為,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com