【題目】“韓信點兵”問題在我國古代數(shù)學史上有不少有趣的名稱,如“物不知數(shù)”“鬼谷算”“隔墻算”“大衍求一術”等,其中《孫子算經(jīng)》中“物不知數(shù)”問題的解法直至1852年傳由傳教士傳入至歐洲,后驗證符合由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. 原文如下:“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”這是一個已知某數(shù)被3除余2,被5除余3,被7除余2,求此數(shù)的問題.現(xiàn)將1至2017這2017個數(shù)中滿足條件的數(shù)按由小到大的順序排成一列數(shù),則中位數(shù)為__________.
【答案】968
【解析】
推導出滿足條件的一個數(shù)為.,用 233 除以 3,5,7 三個數(shù)的最小公倍數(shù) 105,得到余數(shù) 23,由此求出將1至2017這2017個數(shù)中滿足條件的數(shù)按由小到大的順序排成一列數(shù),由此能求出滿足條件的數(shù)的中位數(shù).
解:從3 和5 的公倍數(shù)中找出被7 除余1 的最小數(shù)15,
從3 和7 的公倍數(shù)中找出被 5 除余1 的最小數(shù)21,
最后從5 和7 的公倍數(shù)中找出除3 余1 的最小數(shù)70,
用15 乘以(2 為最終結(jié)果除以7 的余數(shù)),
用21 乘以(3 為最終結(jié)果除以5 的余數(shù)),
同 理,用70 乘以 (2為最終結(jié)果除以3 的余數(shù)),
然后把三個乘積相加,
即.
用 233 除以 3,5,7 三個數(shù)的最小公倍數(shù) 105,得到余數(shù) 23,
將1至2017這2017個數(shù)中滿足條件的數(shù)按由小到大的順序排成一列數(shù),依次為:
23,128,233,338,443,548,653,758,863,968,1073,1178,1283,1388,1493,1598,1703,1808,1913,
中位數(shù)為:968.
故答案為:968.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求方程的實數(shù)解;
(Ⅱ)如果數(shù)列滿足,(),是否存在實數(shù),使得對所有的都成立?證明你的結(jié)論.
(Ⅲ)在(Ⅱ)的條件下,設數(shù)列的前項的和為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為考查某種藥物預防疾病的效果,隨機抽查了50只服用藥的動物和50只未服用藥的動得知服用藥的動物中患病的比例是,未服用藥的動物中患病的比例為.
(I)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表:
患病 | 未患病 | 總計 | |
服用藥 | |||
沒服用藥 | |||
總計 |
(II)能否有99%的把握認為藥物有效?并說明理由.
附:
… | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
… | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小明家的晚報在下午任何一個時間隨機地被送到,他們一家人在下午任何一個時間隨機地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進行編號,編號為01,編號為02,依此類推,編號為90.在隨機數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)7840中的78不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為
7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構(gòu)對高三學生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù):
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預測記憶力為9的同學的判斷力.
相關公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】手機支付也稱為移動支付,是指允許用戶使用其移動終端(通常是手機)對所消費的商品或服務進行賬務支付的一種服務方式.隨著信息技術的發(fā)展,手機支付越來越成為人們喜歡的支付方式.某機構(gòu)對某地區(qū)年齡在15到75歲的人群“是否使用手機支付”的情況進行了調(diào)查,隨機抽取了100人,其年齡頻率分布表和使用手機支付的人數(shù)如下所示:(年齡單位:歲)
年齡段 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
使用人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認為“使用手機支付”與年齡有關?
年齡低于45歲 | 年齡不低于45歲 | |
使用手機支付 | ||
不使用手機支付 |
(2)若從年齡在[55,65),[65,75]的樣本中各隨機選取2人進行座談,記選中的4人中“使用手機支付”的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.
參考數(shù)據(jù):
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點、間的距離為,動點滿足,則的最小值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com