【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知2Sn=3n+1+2n﹣3.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Tn .
【答案】
(1)解:∵2Sn=3n+1+2n﹣3,
∴當n≥2時,2an=2Sn﹣2Sn﹣1=(3n+1+2n﹣3)﹣[3n+2(n﹣1)﹣3]=23n+2,
∴an=3n+1,
又a1=S1= (32+2×1﹣3)=4,適合上式,
∴an=3n+1;
(2)解:由(1)知an=3n+1,則nan=n3n+n,
∵數(shù)列{nan}的前n項和Tn,
則Tn=131+232+…+n3n+(1+2+3+…+n),
令A(yù)n=131+232+…+n3n,①
則3An=132+233+…+(n﹣1)3n+n3n+1,②
①﹣②得:﹣2An=31+32+…+3n﹣n3n+1
= ﹣n3n+1=( )3n+1﹣ ,
∴An= 3n+1+ .
∴Tn= 3n+1+ +
【解析】(1)由Sn=3n+1+2n﹣3,可得當n≥2時,an=Sn﹣Sn﹣1=3n+1,再檢驗當n=1時,a1是否適合上式,即可求得數(shù)列{an}的通項公式;(2)依題意,nan=n3n+n,Tn=131+232+…+n3n+(1+2+3+…+n),令A(yù)n=131+232+…+n3n , 利用錯位相減法可求得An= 3n+1+ ,而1+2+3+…+n= ,從而可得數(shù)列{nan}的前n項和Tn .
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐S﹣ABC的所有頂點都在球O的球面上,SC是球O的直徑,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱錐S﹣ABC的體積為9,則球O的表面積為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | π | ||||
Asin(ωx+φ) | 0 | 3 | ﹣3 | 0 |
(1)請將上表空格中處所缺的數(shù)據(jù)填寫在答題卡的相應(yīng)位置上,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點的橫坐標縮短為原來的 ,再將所得圖象向左平移 個單位,得到y(tǒng)=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個單位后得到的圖象關(guān)于點( ,0)對稱,則|φ|的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,點P,G分別是,的中點,已知⊥平面ABC,==3,==2.
(I)求異面直線與AB所成角的余弦值;
(II)求證:⊥平面;
(III)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中點.
現(xiàn)沿AD把平面PAD折起,使得PA⊥AB(如圖乙所示),E、F分別為BC、AB邊的中點.
(1)求證:平面PAE⊥平面PDE;
(2)在PE上找一點Q,使得平面BDQ⊥平面ABCD.
(3)在PA上找一點G,使得FG∥平面PDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com