【題目】如圖,在三棱柱中,點P,G分別是,的中點,已知⊥平面ABC,==3,==2.
(I)求異面直線與AB所成角的余弦值;
(II)求證:⊥平面;
(III)求直線與平面所成角的正弦值.
【答案】(Ⅰ)(Ⅱ)見解析(Ⅲ)
【解析】分析:(Ⅰ)由題意得∥AB,故∠G是異面直線與AB所成的角,解三角形可得所求余弦值.(Ⅱ)在三棱柱中,由⊥平面ABC可得⊥A1G,于是⊥A1G,又A1G⊥,根據(jù)線面垂直的判定定理可得結(jié)論成立.(Ⅲ)取的中點H,連接AH,HG;取HG的中點O,連接OP,.由PO//A1G可得平面,
故得∠PC1O是PC1與平面所成的角,然后解三角形可得所求.
詳解:
(I)∵∥AB,
∴∠G是異面直線與AB所成的角.
∵==2,G為BC的中點,
∴A1G⊥B1C1,
在中,,
∴,
即異面直線AG與AB所成角的余炫值為.
(II)在三棱柱中,
∵⊥平面ABC,平面ABC,
∴⊥A1G,
∴⊥A1G,
又A1G⊥,,
∴平面.
(III)解:取的中點H,連接AH,HG;取HG的中點O,連接OP,.
∵PO//A1G,
∴平面,
∴∠PC1O是PC1與平面所成的角.
由已知得,,
∴
∴直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 已知2Sn=3n+1+2n﹣3.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|< )的部分圖象如圖所示,下列說法正確的是( )
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關于點(﹣ ,0)對稱
C.將函數(shù)f(x)的圖象向左平移 個單位得到的函數(shù)圖象關于y軸對稱
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+ ,kπ+ ](K∈Z)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線ax+by—4=0和圓x2+y2=4沒有公共點,則過點(a,b)的直線與橢圓+=1的公共點個數(shù)為( )
A. 0 B. 1 C. 2 D. 由a,b的取值來確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一動圓與定圓外切,同時和圓內(nèi)切,定點A(1,1).
(1)求動圓圓心P的軌跡E的方程,并說明是何種曲線;
(2)M為E上任意一點, F為E的左焦點,試求的最小值;
(3)試求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點,AB=AF=BC=2.
(1)當GB=GF時,求證:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在點G滿足BF⊥平面AEG?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com