【題目】設(shè)為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時,;當(dāng)兩條棱平行時,的值為兩條棱之間的距離;當(dāng)兩條棱異面時,

(1)求概率

(2)求的分布列,并求其數(shù)學(xué)期望

【答案】(1)

(2)

【解析】(1)求出兩條棱相交時相交棱的對數(shù),即可由概率公式求得概率

(2)求出兩條棱平行距離為的共有6對,即可求出,從而求出(兩條棱平行距離為1和兩條棱異面),因此得到隨機變量的分布列,求出其數(shù)學(xué)期望

解:(1)若兩條棱相交,則交點必為正方體8個頂點中的一個,過任意1個頂點恰有3條棱,

∴共有對相交棱。

。

(2)若兩條棱平行,則它們的距離為1或,其中距離為的共有6對,

,

∴隨機變量的分布列是:

0

1

其數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點D,D1分別為AC,A1C1上的點.

(1)當(dāng)的值等于何值時,BC1∥平面AB1D1;

(2)若平面BC1D∥平面AB1D1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的邊AB=2,BC=1,以A為坐標(biāo)原點,AB,AD邊分別在x軸、y軸的正半軸上,建立直角坐標(biāo)系。將矩形折疊,使A點落在線段DC上,重新記為點

(1)當(dāng)點坐標(biāo)為(1,1)時,求折痕所在直線方程.

(2)若折痕所在直線的斜率為k,試求折痕所在直線的方程;

(3)當(dāng)時,設(shè)折痕所在直線與軸交于點E,與軸交于點F,將沿折痕EF旋轉(zhuǎn).使二面角的大小為,設(shè)三棱錐的外接球表面積為,試求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國古代第一部數(shù)學(xué)專著,成于公元一世紀(jì)左右,系統(tǒng)總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學(xué)成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經(jīng)驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長為的弧田.其實際面積與按照上述經(jīng)驗公式計算出弧田的面積之間的誤差為( )平方米.(其中,

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差為2,前n項和為Sn , 且S1 , S2 , S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(﹣1)n1 ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) , 是非零向量,已知命題p:若 =0, =0,則 =0;命題q:若 , ,則 ,則下列命題中真命題是(
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=3sin(2x+ )的圖象向右平移 個單位長度,所得圖象對應(yīng)的函數(shù)(
A.在區(qū)間[ ]上單調(diào)遞減
B.在區(qū)間[ , ]上單調(diào)遞增
C.在區(qū)間[﹣ , ]上單調(diào)遞減
D.在區(qū)間[﹣ ]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個三角形,當(dāng)該三角形面積最小時,切點為P(如圖),雙曲線C1 過點P且離心率為

(1)求C1的方程;
(2)若橢圓C2過點P且與C1有相同的焦點,直線l過C2的右焦點且與C2交于A,B兩點,若以線段AB為直徑的圓過點P,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分16分)甲方是一農(nóng)場,乙方是一工廠,由于乙方生產(chǎn)須占用甲方的資源,因此甲方每年向乙方索賠以彌補經(jīng)濟損失并獲得一定凈收入.乙方在不賠付甲方的情況下,乙方的年利潤(元)與年產(chǎn)量(噸)滿足函數(shù)關(guān)系.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方元(以下稱為賠付價格).

)將乙方的年利潤w (元)表示為年產(chǎn)量(噸)的函數(shù),并求出乙方獲得最大利潤的年產(chǎn)量;

)甲方每年受乙方生產(chǎn)影響的經(jīng)濟損失金額(元),在乙方按照獲得最大利潤的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價格是多少?

查看答案和解析>>

同步練習(xí)冊答案