【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點

1)求該橢圓的標(biāo)準(zhǔn)方程;

2)若是橢圓上的動點,求線段中點的軌跡方程;

【答案】12

【解析】試題分析:(1)由左焦點為,右頂點為D2,0),得到橢圓的半長軸a,半焦距c,再求得半短軸b,最后由橢圓的焦點在x軸上求得方程;(2)首先設(shè)所求點為Mx,y),借助于中點性質(zhì)得到P點坐標(biāo)用x,y表示,將P點代入橢圓方程從而得到中點的軌跡方程

試題解析:(1)由已知得橢圓的半長軸a=2,半焦距c=,則半短軸b=1

又橢圓的焦點在x軸上, ∴橢圓的標(biāo)準(zhǔn)方程為

2)設(shè)線段PA的中點為Mx,y,P的坐標(biāo)是(x0,y0,

由點P在橢圓上,,

線段PA中點M的軌跡方程是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,左、右焦點分別為F1,F2,且|F1F2|=2,點1, 在橢圓C

1求橢圓C的方程;

2F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知P點到兩定點D(﹣2,0),E(2,0)連線斜率之積為-
(1)求證:動點P恒在一個定橢圓C上運動;
(2)過 的直線交橢圓C于A,B兩點,過O的直線交橢圓C于M,N兩點,若直線AB與直線MN斜率之和為零,求證:直線AM與直線BN斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù) 處的切線方程;

(2)設(shè) ,討論函數(shù) 的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,

(1)求證:

(2)試在線段上找一點,使平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.

(1)a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

(2)a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為

(1)若F是線段CD的中點,證明:EF⊥平面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),

(1)求實數(shù)m的值;

(2)判斷函數(shù)的單調(diào)性并用定義法加以證明;

(3)若函數(shù)上的最小值為,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案