設(shè)集合A={1,2,3,4,5},集合B={1,3,5},則集合A∩B=( 。
A、{2,4}
B、{1,2,3}
C、{1,3,5}
D、{1,2,3,4,5}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用交集定義求解.
解答: 解:∵集合A={1,2,3,4,5},集合B={1,3,5},
∴集合A∩B={1,3,5}.
故選:C.
點(diǎn)評(píng):本題考查交集的運(yùn)算,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3},集合M={1},則全集U中M的補(bǔ)集為( 。
A、{1}B、{1,2}
C、{1,3}D、{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是2、3、4,則cos∠B的值為( 。
A、
7
8
B、
11
16
C、
1
4
D、-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為第四象限角,且tanα=-2,則sinα=(  )
A、
5
5
B、-
5
5
C、-
2
5
5
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義在R上的偶函數(shù),且f(x+1)=-f(x),當(dāng)x∈[0,1],f(x)=x2+1.
(1)f(x)在(1,2)上增,(2,3)上減
(2)f(2014)=1
(3)f(x)圖象關(guān)于x=2k+1(k∈Z)對(duì)稱
(4)當(dāng)x∈[3,4]時(shí),f(x)=(x-4)2+1    
則正確的個(gè)數(shù)有( 。﹤(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知AB和CD是曲線C:
x=4t2
y=4t
(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|•|PB|=|PC|•|PD|.
(1)將曲線C的參數(shù)方程化為普通方程,并說(shuō)明它表示什么曲線;
(2)試求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n∈N,f(x)=(1+2x)m+(1+x)n
(1)當(dāng)m=n=2014時(shí),若f(x)的展開式可表示為f(x)=a0+a1x+a2x2+…+a2014x2014,求a0-a1+a2-…-a2014;
(2)若f(x)展開式中x的系數(shù)是20,則當(dāng)m,n取何值時(shí),x2系數(shù)最小,最小為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式
x2+3
x-a
<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+ax+1,a∈R.
(Ⅰ)求f(x)在x=1處的切線方程;
(Ⅱ)若不等式f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)數(shù)列{an}中,a1=2,2an+1=an+1,數(shù)列{bn}滿足bn=nlnan,記{bn}的前n項(xiàng)和為Tn.求證:Tn<4-
n+2
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案