(7)設A,B,C,D是空間四個不同的點.在下列命題中,不正確的是

   (A)若AC與BD共面,則AD與BC共面

   (B)若AC與BD是異面直線,則AD與BC是異面直線

   (C)若AB=AC,DB=DC,則AD=BC

   (D)若AB=AC,DB=DC,則AD⊥BC

C

解析:對于選項(A)若AC與BD共面,不妨設共面于α,則A、B、C、D∈α

這樣ADα,BCα  則AD與BC共面.

選項(B) 假設AD與BC為共面直線,由上述(A)的解析可知AC與BD共

面這與前提“AC與BD為異面直線”矛盾,故AD與BC是異面直線.

選項(D)如圖示取BC中點M,由AB=AC   DB=DC得AM⊥BC  DM⊥BC

又AM∩DM=M

∴BC⊥面AMD    ∴BC⊥AD

選項(C)無法判斷 

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=cos(2x+
π
3
)+sin2x.
(1)求函數(shù)f(x)的最小正周期.
(2)若x∈[
π
12
,
12
],求函數(shù)f(x)的值域.
(3)設A,B,C為△ABC的三個內角,若cosB=
1
3
,f(
c
2
)=-
1
4
,且C為銳角,求sinA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=0.76,b=0.70.7,c=60.7則a,b,c這三個數(shù)的大小關系( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•西城區(qū)一模)已知集合Sn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1,b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5;
(Ⅱ)(。┳C明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)給出下列命題:
①設向量
e1
,
e2
滿足|
e1
|=2,|
e2
|=1,
e1
,
e2
的夾角為
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夾角為鈍角,則實數(shù)t的取值范圍是(-7,-
1
2
);
②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
③設a,b,c分別為△ABC的角A,B,C的對邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
上面命題中,假命題的序號是
 (寫出所有假命題的序號).

查看答案和解析>>

同步練習冊答案