【題目】設(shè)集合,其中.
(1)寫出集合中的所有元素;
(2)設(shè),證明“”的充要條件是“”
(3)設(shè)集合,設(shè),使得,且,試判斷“”是“”的什么條件并說明理由.
【答案】(1),,,;(2)證明見解析;(3)充要條件.
【解析】
(1) 根據(jù)題意,直接列出即可
(2) 利用的和的符號和最高次的相同,利用排除法可以證明。
(3) 利用(2)的結(jié)論完成(3)即可。
(1)中的元素有,,,。
(2)充分性:當(dāng)時,顯然
成立。
必要性:
若=1,則
若=,則
若的值有個1,和個。不妨設(shè)2的次數(shù)最高次為次,其系數(shù)為1,則
,說明只要最高次的系數(shù)是正的,整個式子就是正的,同理,只要最高次的系數(shù)是負的,整個式子就是負的,說明最高次的系數(shù)只能是0,就是說,即
綜上“”的充要條件是“”
(3)
等價于
等價于
由(2)得“=”的充要條件是“”
即“=”是“” 的充要條件
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間[2,3]上有最大值1.
(1)求的值;
(2)求函數(shù)在區(qū)間上的值域;
(3)若在[2,4]上單調(diào),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若與交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海事救援船對一艘失事船進行定位:以失事船的當(dāng)前位置為原點,以正北方向為y軸正方向建立平面直角坐標(biāo)系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里A處,如圖,現(xiàn)假設(shè):
①失事船的移動路徑可視為拋物線 ;
②定位后救援船即刻沿直線勻速前往救援;
③救援船出發(fā)t小時后,失事船所在位置的橫坐標(biāo)為7t
(1)當(dāng)t=0.5時,寫出失事船所在位置P的縱坐標(biāo),若此時兩船恰好會合,求救援船速度的大小和方向.
(2)問救援船的時速至少是多少海里才能追上失事船?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】食品安全一直是人們關(guān)心和重視的問題,學(xué)校的食品安全更是社會關(guān)注的焦點.某中學(xué)為了加強食品安全教育,隨機詢問了36名不同性別的中學(xué)生在購買食品時是否看保質(zhì)期,得到如下“性別”與“是否看保質(zhì)期”的列聯(lián)表:
男 | 女 | 總計 | |
看保質(zhì)期 | 8 | 22 | |
不看保持期 | 4 | 14 | |
總計 |
(1)請將列聯(lián)表填寫完整,并根據(jù)所填的列聯(lián)表判斷,能否有的把握認為“性別”與“是否看保質(zhì)期”有關(guān)?
(2)從被詢問的14名不看保質(zhì)期的中學(xué)生中,隨機抽取3名,求抽到女生人數(shù)的分布列和數(shù)學(xué)期望.
附:,().
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高二學(xué)生、兩個學(xué)科學(xué)習(xí)成績的合格情況是否有關(guān),隨機抽取了該年級一次期末考試、兩個學(xué)科的合格人數(shù)與不合格人數(shù),得到以下22列聯(lián)表:
學(xué)科合格人數(shù) | 學(xué)科不合格人數(shù) | 合計 | |
學(xué)科合格人數(shù) | 40 | 20 | 60 |
學(xué)科不合格人數(shù) | 20 | 30 | 50 |
合計 | 60 | 50 | 110 |
(1)據(jù)此表格資料,能否在犯錯的概率不超過0.01的前提下認為“學(xué)科合格”與“學(xué)科合格”有關(guān);
(2)從“學(xué)科合格”的學(xué)生中任意抽取2人,記被抽取的2名學(xué)生中“學(xué)科合格”的人數(shù)為,求的數(shù)學(xué)期望.
附公式與表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離,在某種路面上,某種型號的汽車的剎車距離s(m)與汽車的車速v(m/s)滿足下列關(guān)系:(n為常數(shù),且),做了兩次剎車實驗,發(fā)現(xiàn)實驗數(shù)據(jù)如圖所示其中
(1)求出n的值;
(2)要使剎車距離不超過12.6米,則行駛的最大速度應(yīng)為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com