【題目】空氣質(zhì)量指數(shù)(簡稱:)是定量描述空氣質(zhì)量狀況的無量綱指數(shù),空氣質(zhì)量按照大小分為六級:為優(yōu),為良,為輕度污染,為中度污染,為重度污染,為嚴重污染.下面記錄了北京市天的空氣質(zhì)量指數(shù),根據(jù)圖表,下列結(jié)論錯誤的是( )

A. 在北京這天的空氣質(zhì)量中,按平均數(shù)來考察,最后天的空氣質(zhì)量優(yōu)于最前面天的空氣質(zhì)量 B. 在北京這天的空氣質(zhì)量中,有天達到污染程度

C. 在北京這天的空氣質(zhì)量中,12月29日空氣質(zhì)量最好 D. 在北京這天的空氣質(zhì)量中,達到空氣質(zhì)量優(yōu)的天數(shù)有

【答案】C

【解析】分析:通過題目所提供的圖表得出22個數(shù)據(jù),研究在各區(qū)間上的數(shù)據(jù)個數(shù),對選項逐一驗證得到答案.

詳解:因為,

所以在北京這天的空氣質(zhì)量中,按平均數(shù)來考察,

最后天的空氣質(zhì)量優(yōu)于最前面天的空氣質(zhì)量,

即選項A正確;

不低于100的數(shù)據(jù)有3個:,

所以在北京這天的空氣質(zhì)量中,有天達到污染程度,

即選項B正確;

因為12月29日的為225,為重度污染,

該天的空氣質(zhì)量最差,即選項C錯誤;

的數(shù)據(jù)有6個:

即達到空氣質(zhì)量優(yōu)的天數(shù)有天,

即選項D正確.故選C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,以軸正半軸為極軸的極坐標中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標方程;

(2)若點的坐標為,圓與直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x R , e 為自然對數(shù)的底數(shù)).

判斷函數(shù) f x 的單調(diào)性與奇偶性;

⑵是否存在實數(shù) t ,使不等式對一切的 x R 都成立若存在,求出 t 的值, 不存在說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大豆是我國主要的農(nóng)作物之一,因此,大豆在農(nóng)業(yè)發(fā)展中占有重要的地位,隨著農(nóng)業(yè)技術(shù)的不斷發(fā)展,為了使大豆得到更好的種植,就要進行超級種培育研究.某種植基地培育的“超級豆種子進行種植測試:選擇一塊營養(yǎng)均衡的可種植株的實驗田地,每株放入三!俺壎種子,且至少要有一粒種子發(fā)芽這株豆苗就能有效成活,每株豆成活苗可以收成大豆.已知每粒豆苗種子成活的概率為假設(shè)種子之間及外部條件一致,發(fā)芽相互沒有影響).

(Ⅰ)求恰好有3株成活的概率;

(Ⅱ)記成活的豆苗株數(shù)為,收成為,求隨機變量分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,其中為自然對數(shù)的底數(shù).

(Ⅰ)設(shè)(其中的導函數(shù)),判斷上的單調(diào)性;

(Ⅱ)若無零點,試確定正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對位顧客進行獎勵,規(guī)定:每位顧客從一個裝有個標有面值的球的袋中一次性隨機摸出個球,球上所標的面值之和為該顧客所獲的獎勵額.

(1)若袋中所裝的個球中有個所標的面值為元,其余個均為元,求顧客所獲的獎勵額的分布列及數(shù)學期望;

(2)商場對獎勵總額的預算是元,并規(guī)定袋中的個球只能由標有面值為元和元的兩種球組成,或標有面值元和元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡.請對袋中的個球的面值給出一個合適的設(shè)計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義域為R的奇函數(shù).

1)求t的值;

2)判斷R上的單調(diào)性,并用定義證明;

3)若函數(shù)上的最小值為-2,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC中,側(cè)面是矩形,BAC=90°,BC=AC=2AB=4,且

(1)求證:平面平面

(2)設(shè)D的中點,判斷并證明在線段上是否存在點E,使得DE平面.若存在,求二面角EB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,且橢圓的短軸長為2.

(1)球橢圓的標準方程;

(2)已知直線過右焦點,且它們的斜率乘積為,設(shè)分別與橢圓交于點.

①求的值;

②設(shè)的中點,的中點為,求面積的最大值.

查看答案和解析>>

同步練習冊答案