已知M(t,1)在不等式組所表示的平面區(qū)域內(nèi),試求整數(shù)t.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區(qū)域內(nèi) 作答.解答應寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線C上點M到直線l的距離的最大值.
D.(1)設x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點M的坐標(x,y)在其運動過程中總滿足關系式
(x-
5
)
2
+y2
+
(x+
5
)
2
+y2
=6

(1)點M的軌跡是什么曲線?請寫出它的標準方程;
(2)已知定點T(t,0)(0<t<3),若|MT|的最小值為1,求t的值;
(3)設直線l不經(jīng)過原點O,與動點M的軌跡相交于A,B兩點,點G為線段AB的中點,直線OG與該軌跡相交于C,D兩點,若直線AB,CD,AC,AD,DB,BC的斜率分別為k1,k2,k3,k4,k5,k6,求證:k1•k2=k3•k4=k5•k6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)三模)已知橢圓T:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點依次為F1,F(xiàn)2,點M(0,2)是橢圓的一個頂點,
MF1
MF2
=0.
(1)求橢圓T的方程;
(2)設G是點F1關于點F2的對稱點,在橢圓T上是否存在兩點P、Q,使
PQ
=
PF1
+
PG
,若存在,求出這兩點,若不存在,請說明理由;
(3)設經(jīng)過點F2的直線交橢圓T于R、S兩點,線段RS的垂直平分線與y軸相交于一點T(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知拋物線C的頂點在坐標原點,焦點F在x軸上,且過點(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F1作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|F1M|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線T,過該圓錐曲線焦點F1的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F1、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明.
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于拋物線的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•閔行區(qū)三模)已知橢圓
x2
4
+y2=1
中心為O,右頂點為M,過定點D(t,0)(t≠±2)作直線l交橢圓于A、B兩點.
(1)若直線l與x軸垂直,求三角形OAB面積的最大值;
(2)若t=
6
5
,直線l的斜率為1,求證:∠AMB=90°;
(3)在x軸上,是否存在一點E,使直線AE和BE的斜率的乘積為非零常數(shù)?若存在,求出點E的坐標和這個常數(shù);若不存在,說明理由.

查看答案和解析>>

同步練習冊答案