8.終邊在折線y=$\sqrt{3}$|x|所有角的集合是{α|α=60°+k•360°或α=120°+k•360°,k∈Z},在這個(gè)集合中,介于[-360°,360°)的角的集合是{-300°,-240°60°,120°}.

分析 寫出分段函數(shù),然后求出終邊在折線y=$\sqrt{3}$|x|所有角的集合;分別取k=-1,0求得介于[-360°,360°)的角的集合.

解答 解y=$\sqrt{3}$|x|=$\left\{\begin{array}{l}{\sqrt{3}x,x≥0}\\{-\sqrt{3}x,x<0}\end{array}\right.$,
∴終邊在折線y=$\sqrt{3}$|x|所有角的集合是{α|α=60°+k•360°或α=120°+k•360°,k∈Z}.
當(dāng)k=-1時(shí),α=-300°,或α=-240°;
當(dāng)k=0時(shí),α=60°或α=120°.
故答案為:{α|α=60°+k•360°或α=120°+k•360°,k∈Z};{-300°,-240°,60°,120°}.

點(diǎn)評 本題考查終邊相同角的概念,是基礎(chǔ)的會考題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)過點(diǎn)A($\sqrt{14}$,$\sqrt{5}$),且點(diǎn)A到雙曲線的兩條漸近線的距離的積為$\frac{4}{3}$,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\frac{sinx}{2+cosx}$是奇(填“奇”或“偶”)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sin(α-$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$,則sin($\frac{5π}{4}$-α)的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知(sinα+1)(1+cosα)=0,求sinα+cosα,sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知偶函數(shù)f(x)定義域R,且在[0,+∞)上是減函數(shù),比較f(-$\frac{3}{4}$)和f(a2-a+1)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\sqrt{x-1}$的定義域?yàn)閇1,+∞),值域?yàn)閇0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線ax+y+1=0被圓x2+y2-2ax+a=0截得的弦長為2,則實(shí)數(shù)a的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)y=f(x)對任意的x都滿足f(x+2)=f(x),當(dāng)-1≤x<1時(shí),f(x)=sin$\frac{π}{2}$x,若函數(shù)g(x)=f(x)-loga|x|至少6個(gè)零點(diǎn),則a的取值范圍是(  )
A.(0,$\frac{1}{5}$]∪(5,+∞)B.(0,$\frac{1}{5}$)∪[5,+∞)C.($\frac{1}{7}$,$\frac{1}{5}$]∪(5,7)D.($\frac{1}{7}$,$\frac{1}{5}$)∪[5,7)

查看答案和解析>>

同步練習(xí)冊答案