等差數(shù)列{an}的前n項和為Sn,數(shù)列{bn}是等比數(shù)列,滿足a1=2,b1=1,b2+S2=8,a5-2b2=a3
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)令cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,設數(shù)列{cn}前n項和為Tn,求T2n
考點:數(shù)列的求和,等差數(shù)列的性質,等比數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:(I)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(II)利用等差數(shù)列與等比數(shù)列的前n項和公式即可得出.
解答: 解:(Ⅰ)設數(shù)列{an}的公差為d,數(shù)列{bn}的公比為q,則
b2+S2=8
a5-2b2=a3
q+4+d=8
2+4d-2q=2+2d
解得
d=2
q=2
,
∴an=2+2(n-1)=2n,bn=2n-1
(Ⅱ)由(Ⅰ),cn=
2n,n為奇數(shù)
2n-1,n為偶數(shù)
,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n
=[2+6+…+(4n-2)]+(2+23+…+22n-1
=
n(2+4n-2)
2
+
2(1-4n)
1-4

=2n2+
2
3
4n-
2
3
點評:本題考查了遞推式的應用、等差數(shù)列的通項公式及其前n項和公式、“分組求和”方法,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x+sinx,x∈R(  )
A、是奇函數(shù),但不是偶函數(shù)
B、是偶函數(shù),但不是奇函數(shù)
C、既是奇函數(shù),又是偶函數(shù)
D、既不是奇函數(shù),又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2|x|-3.
(1)作出函數(shù)f(x)的大致圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調區(qū)間;
(2)求函數(shù)f(x)在[-2,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三角形ABC中,
內切圓半徑
外接圓半徑
=
OD
OA
=
OD
AD-OD
=
OD
AD
1-
OD
AD
,而
OD
AD
=
S△OBC
S△ABC
=
1
3
,所以
內切圓半徑
外接圓半徑
=
1
2
.應用類比推理,在正四面體ABCD(每個面都是正三角形的四面體)中,
內切球的半徑r
外接球的半徑R
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,其前n項和為Sn,若a1a5=64,S5-S3=48.
(1)求數(shù)列{an}的通項公式;
(2)對于正整數(shù)k,m,l(k<m<l),求證:“m=k+1且l=k+3”是“5ak,am,al這三項經(jīng)適當排序后能構成等差數(shù)列”成立的充要條件;
(3)設數(shù)列{bn}滿足:對任意的正整數(shù)n,都有a1bn+a2bn-1+a3bn-2+…+anb1=3•2n+1-4n-6,且集合M={n|
bn
an
≥λ,n∈N*}
中有且僅有3個元素,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)為R上的偶函數(shù),若對任意的x1、x2∈(-∞,0](x1≠x2),都有
f(x2)-f(x1)
x2-x1
>0,則(  )
A、f(-2)<f(1)<f(3)
B、f(1)<f(-2)<f(3)
C、f(3)<f(-2)<f(1)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD中,點E為邊CD的中點,若在矩形中隨機撒一粒黃豆,則黃豆落在△ABE內的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+x,a∈R.
(1)當a=1時,求在點(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明“1+a+a2+…+an+1=
1-an+2
1-a
,(a≠1,n∈N*)
”時,在驗證n=1成立時,左邊應該是( 。
A、1+a+a2
B、1+a+a2+a3
C、1+a
D、1

查看答案和解析>>

同步練習冊答案