(本小題滿分10分)如圖,四棱錐
的底面ABCD是正方形,
底面ABCD,E,F(xiàn)分別是AC,PB的中點.
(I)證明:
平面PCD;
(Ⅱ) 若
求EF與平面PAC所成角的大。
(I)略
(Ⅱ) EF與平面PAC所成角的大小是30°
(I)證明:如圖,連結(jié)BD,則E是BD的中點.
又F是PB的中點,所以
因為EF不在平面PCD內(nèi),所以
平面PCD.
(Ⅱ) 解:連結(jié)PE.
因為ABCD是正方形,
所以BD^AC.又PA^平面ABC,所以
因此
平面PAC.故
是PD與平面PAC所成的角.
因為
所以EF與平面PAC所成角的大小等于
因為
所以
因此
在
中,
所以EF與平面PAC所成角的大小是30°
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖,四邊形
ABCD為矩形,
BC⊥平面
ABE,
F為
CE上的點,
且
BF⊥平面
ACE.
(1)求證:
AE⊥
BE;
(2)設(shè)點
M為線段
AB的中點,點
N為線段
CE的中點.
求證:
MN∥平面
DAE.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖,直三棱柱
ABC—A
1B
1C
1的底面是等腰直角三角形,∠A
1C
1B
1=90°,A
1C
1=1,AA
1=
,D是線段A
1B
1的中點.
(1)證明:面
⊥平面A
1B
1BA;
(2)證明:
;
(3)求棱柱ABC—A
1B
1C
1被平面
分成兩部分
的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分l4分)如圖,邊長為
的正方體
中,
是
的中點,
在線段
上,且
.
(1)求異面直線
與
所成角的余弦值;
(2)證明:
面
;
(3)求點
到面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分).如圖所示,四棱錐
P-
ABCD的底面積
ABCD是邊長為1的菱形,
∠
BCD=60°,
E是
CD的中點,
PA⊥底面積
ABCD,
PA=
.
(Ⅰ)證明:平面
PBE⊥平面
PAB;
(Ⅱ) 過PC中點F作FH//平面PBD, FH交平面ABCD 于H點,判定H點位于平面ABCD的那個具體位置?(無須證明)
(Ⅲ)求二面角
A-
BE-
P的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知四邊形
為矩形,
、
分別是線段
、
的中點,
平面
(1)求證:
;
(2)設(shè)點
在
上,且
平面
,試確定點
的位置.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,四棱錐P-ABCD是底面邊長為1的正方形,PD⊥BC,PD=1,PC=
.
(Ⅰ)求證:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分),
如圖,菱形ABCD所在平面與矩形ACEF所在平面互相垂直,已知BD=
AF,且點M是線段EF的中點.
(1)求證:AM∥平面BDE;
(2)求平面DEF與平面BEF所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若長方體公共頂點的三個面的面積分別為
,則對角線長為( )
查看答案和解析>>